
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2009

Placement techniques for the physical synthesis of
nanometer-scale integrated circuits
Natarajan Viswanathan
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Viswanathan, Natarajan, "Placement techniques for the physical synthesis of nanometer-scale integrated circuits" (2009). Graduate
Theses and Dissertations. 10758.
https://lib.dr.iastate.edu/etd/10758

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10758?utm_source=lib.dr.iastate.edu%2Fetd%2F10758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Placement techniques for the physical synthesis of

nanometer-scale integrated circuits

by

Natarajan Viswanathan

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Chris C.-N. Chu, Major Professor

Charles J. Alpert
Maria Axenovich

Degang Chen
Randall L. Geiger

Gi-Joon Nam
Akhilesh Tyagi

Iowa State University

Ames, Iowa

2009

Copyright c© Natarajan Viswanathan, 2009. All rights reserved.

www.manaraa.com

ii

TABLE OF CONTENTS

LIST OF FIGURES . vi

LIST OF TABLES . ix

LIST OF ALGORITHMS . xii

ACKNOWLEDGEMENTS . xiii

ABSTRACT . xiv

CHAPTER 1. GENERAL INTRODUCTION 1

1.1 Integrated Circuit Placement . 1

1.2 Dissertation Organization . 5

PART I PLACEMENT AS A POINT TOOL 8

CHAPTER 2. GLOBAL PLACEMENT . 9

2.1 Introduction . 9

2.2 Key Contributions of This Work . 12

2.3 Quadratic Placement Methodology . 13

2.4 Density Aware Module Spreading . 16

2.4.1 Spreading of Standard-cells . 17

2.4.2 Spreading of Macro-blocks . 19

2.4.3 Handling the Density Target Constraint 22

2.4.4 Addition of Spreading Forces . 23

2.5 Placement Restructuring via Force-vector Modulation 25

2.5.1 Spreading Forces During Global Placement 26

www.manaraa.com

iii

2.5.2 Force-vector Modulation . 27

2.5.3 Advantages of Modulation . 29

2.5.4 Effect of Force-vector Modulation . 30

2.6 Iterative Local Refinement . 32

2.6.1 Bin Structure for Iterative Local Refinement 33

2.6.2 Iterative Local Refinement for Simultaneous Spreading and Wire Length

Minimization . 33

2.6.3 Iterative Local Refinement for Handling Placement Blockages 35

2.6.4 Score for Module Movement During Iterative Local Refinement 37

2.6.5 Iterative Local Refinement for Placement Congestion Control 38

2.7 Multilevel Global Placement Framework . 38

2.7.1 Clustering for Placement . 42

2.8 The FastPlace and RQL Global Placement Algorithms 45

CHAPTER 3. LEGALIZATION . 49

3.1 Introduction . 49

3.2 Overview of the Mixed-size Legalization Algorithm 50

3.3 Legalization of Macro-blocks . 51

3.3.1 Iterative Clustering Algorithm . 52

3.3.2 Macro-block Legalization by Simulated Annealing 54

3.3.3 Effect of Macro-block Legalization . 57

3.4 Legalization of Standard-cells . 59

3.4.1 Slice Aware Bin-based Cell Movement 59

3.4.2 Slice-based Cell Legalization . 61

3.4.3 Advantages of Slice-based Legalization over Bin-based Legalization . . . 63

CHAPTER 4. EXPERIMENTAL RESULTS 66

4.1 Benchmark Circuits . 66

4.2 Placement Results on the ISPD-2005 Benchmarks 66

4.3 Placement Results on the ISPD-2006 Benchmarks 68

www.manaraa.com

iv

PART II PLACEMENT IN A PHYSICAL SYNTHESIS FLOW 72

CHAPTER 5. CLOCK CONSTRAINT AWARE TIMING-DRIVEN PLACE-

MENT . 73

5.1 Introduction . 73

5.1.1 Previous Work on Local Clock Tree Synthesis Methodology 74

5.1.2 Previous Work on Handling Clock Constraints During Timing-driven

Placement . 79

5.2 Key Contributions of This Work . 80

5.3 Overview of Clock Constraint Aware Timing-driven Placement 81

5.4 Handling Latch Clusters During Timing-driven Placement 84

5.4.1 Initial Netlist Processing . 84

5.4.2 LCB to Latch Net-weight Modulation 85

5.4.3 LCB Legalization . 86

5.4.4 Latch Legalization . 87

5.4.5 Advantages of the Clock Constraint Aware Timing-driven Placement

Algorithm . 87

5.5 Experimental Results . 90

5.5.1 Latch Cluster Placement, Wire Length and Design Timing After Timing-

driven Placement . 91

5.5.2 Wire Length, Design Timing and Global Routing Congestion Analysis

at the End of Physical Synthesis . 94

5.6 Key Findings and Observations . 96

CHAPTER 6. INTEGRATED TIMING OPTIMIZATION AND PLACE-

MENT . 98

6.1 Introduction . 98

6.1.1 Global Timing-driven Placement Techniques 98

6.1.2 Incremental Timing-driven Placement Techniques 103

6.2 Key Contributions of This Work . 104

www.manaraa.com

v

6.3 Overview of Integrated Timing Optimization and Placement 106

6.4 Critical Path Smoothing . 108

6.4.1 Slack-based Critical Path Threading . 108

6.4.2 Incremental Timing-driven Placement 111

6.4.3 Tunneling to Handle Placement Blockages 113

6.5 Congestion Mitigation and Wire Length Recovery 115

6.6 Incremental Timing Optimization . 118

6.7 Slack Histogram Compression . 119

6.8 The ITOP Algorithm . 119

6.9 Experimental Results . 122

6.9.1 Effect of Placement During ITOP . 122

6.9.2 Effect of Tunneling During Critical Path Smoothing 123

6.9.3 Effect of Periodic Slack Histogram Compression 125

6.9.4 Physical Synthesis Flows for Comparison of Results 125

6.9.5 Results on High Performance Industrial Designs 127

6.10 Key Findings and Observations . 132

CHAPTER 7. GENERAL CONCLUSIONS 135

BIBLIOGRAPHY . 137

www.manaraa.com

vi

LIST OF FIGURES

Figure 1.1 Mixed-size circuit with placement blockages and significant white space 3

Figure 1.2 An example nanometer-scale physical synthesis flow 7

Figure 2.1 Quadratic placement approach and its analogy to a spring system . . . 13

Figure 2.2 Clique and star models for a multi-pin net 14

Figure 2.3 Bin structure and utilization during Density Aware Module Spreading

for standard-cells . 18

Figure 2.4 Bin structure and cell distribution during Density Aware Module Spread-

ing for standard-cells . 20

Figure 2.5 Bin structure construction for macro-block spreading 21

Figure 2.6 Spreading force addition on a module during Density Aware Module

Spreading by using an on-chip fixed-point 24

Figure 2.7 Spreading force magnitude for all the modules in a circuit during one

of the iterations of global placement . 26

Figure 2.8 Force-vector modulation by nullifying the top 10% of spreading forces . 28

Figure 2.9 Effect of modulation on the module locations and net wire length . . . 31

Figure 2.10 Eight tentative moves for score calculation during Iterative Local Re-

finement . 34

Figure 2.11 Handling placement blockages during Iterative Local Refinement . . . 36

Figure 2.12 Bin size progression during Iterative Local Refinement 39

Figure 2.13 Multilevel global placement framework employed within FastPlace . . . 40

Figure 2.14 Multilevel global placement framework employed within RQL 41

www.manaraa.com

vii

Figure 3.1 Minimum perturbation floorplan realization problem 51

Figure 3.2 Iterative Clustering algorithm for macro-block legalization on an exam-

ple circuit . 55

Figure 3.3 Iterative Clustering algorithm for macro-block legalization on an exam-

ple circuit (continued) . 56

Figure 3.4 Effect of macro-block legalization during placement 58

Figure 3.5 A row slice for standard-cell legalization 59

Figure 3.6 Slice aware bin-based cell movement 61

Figure 3.7 Cell movement during slice-based cell legalization 62

Figure 3.8 Disadvantage of a bin-based legalization technique – satisfying bin ca-

pacity does not guarantee a legal placement 64

Figure 3.9 Advantage of a slice-based legalization technique – satisfying slice ca-

pacity guarantees a legal placement . 65

Figure 5.1 Traditional physical design flow employing clock tree synthesis 75

Figure 5.2 Reduction in the local clock interconnect by following an enhanced local

clock tree synthesis methodology . 76

Figure 5.3 Latch huddle around a local clock buffer 77

Figure 5.4 Enhanced clock tree synthesis methodology for optimized local clock

network . 78

Figure 5.5 Latch clustering and LCB duplication during local clock tree synthesis 78

Figure 5.6 Latch clusters after clock constraint aware timing-driven placement . . 79

Figure 5.7 High-level flow for clock constraint aware timing-driven placement . . . 83

Figure 5.8 Clock constraint aware timing-driven placement on an example circuit 88

Figure 6.1 A physical synthesis flow using net-based timing-driven placement . . . 99

Figure 6.2 Total wire length and routing congestion at various stages of a physical

synthesis flow employing net-weight driven timing-driven placement . . 101

www.manaraa.com

viii

Figure 6.3 A physical synthesis flow incorporating Integrated Timing Optimization

and Placement . 106

Figure 6.4 High-level flow for Integrated Timing Optimization and Placement . . 107

Figure 6.5 Slack-based Critical Path Threading 110

Figure 6.6 Tunneling through fixed macros during critical path smoothing 114

Figure 6.7 Bin density target during Congestion Mitigation 117

Figure 6.8 Scheduling the number of paths to be optimized during Integrated Tim-

ing Optimization and Placement . 120

Figure 6.9 Effect of incremental placement during Integrated Timing Optimization

and Placement. Worst slack progression during the iterative flow . . . 123

Figure 6.10 Effect of incremental placement during Integrated Timing Optimization

and Placement. Figure of Merit progression during the iterative flow . 124

Figure 6.11 Physical synthesis flows for comparison of results. 126

Figure 6.12 Final routing congestion on the placements obtained from the No timing-

driven placement, Net-weighted timing-driven placement and Integrated

Timing Optimization and Placement flows 133

www.manaraa.com

ix

LIST OF TABLES

Table 2.1 Effect of force-vector modulation on the half-perimeter wire length . . 31

Table 4.1 Statistics for the ISPD-2005 and ISPD-2006 placement benchmarks . . 67

Table 4.2 HPWL comparison of FastPlace and RQL with existing academic plac-

ers on the ISPD-2005 placement benchmarks 67

Table 4.3 HPWL comparison of RQL with the top performing academic placers

during the ISPD-2005 placement contest 68

Table 4.4 Runtime comparison of RQL and FastPlace with existing academic plac-

ers on the ISPD-2005 placement benchmarks 69

Table 4.5 HPWL comparison of RQL and FastPlace with existing academic plac-

ers on the ISPD-2006 placement benchmarks 70

Table 4.6 Scaled HPWL (S HPWL) comparison of RQL and FastPlace with ex-

isting academic placers on the ISPD-2006 placement benchmarks . . . 71

Table 5.1 Statistics for a set of high performance industrial designs to test the

clock constraint aware timing-driven placement algorithm 90

Table 5.2 Comparison of the LCB to latch distance statistics between timing-

driven placement and clock constraint aware timing-driven placement . 91

Table 5.3 Comparison of the HPWL between timing-driven placement and clock

constraint aware timing-driven placement after the timing-driven place-

ment step . 93

www.manaraa.com

x

Table 5.4 Comparison of the design timing between timing-driven placement and

clock constraint aware timing-driven placement after the timing-driven

placement step . 93

Table 5.5 Comparison of the HPWL between timing-driven placement and clock

constraint aware timing-driven placement based flows at the end of

physical synthesis . 95

Table 5.6 Comparison of the design timing between timing-driven placement and

clock constraint aware timing-driven placement based flows at the end

of physical synthesis . 95

Table 5.7 Global routing congestion analysis results of the timing-driven place-

ment and clock constraint aware timing-driven placement based flows

at the end of physical synthesis . 96

Table 6.1 Design timing at various stages of a physical synthesis flow employing

net-weight driven timing-driven placement 102

Table 6.2 Statistics for a set of high performance industrial designs to test the

Integrated Timing Optimization and Placement algorithm 122

Table 6.3 Effect of tunneling during critical path smoothing. Design timing at

the end of Integrated Timing Optimization and Placement 124

Table 6.4 Effect of periodic slack histogram compression during the iterative flow.

Design timing at the end of Integrated Timing Optimization and Place-

ment . 125

Table 6.5 Worst slack comparison between the No timing-driven placement, Net-

weighted timing-driven placement and Integrated Timing Optimization

and Placement flows . 128

Table 6.6 Timing Figure of Merit comparison between the No timing-driven place-

ment, Net-weighted timing-driven placement and Integrated Timing

Optimization and Placement flows . 129

www.manaraa.com

xi

Table 6.7 Number of negative paths at the end of the No timing-driven place-

ment, Net-weighted timing-driven placement and Integrated Timing

Optimization and Placement flows . 129

Table 6.8 Total wire length comparison between the No timing-driven placement,

Net-weighted timing-driven placement and Integrated Timing Opti-

mization and Placement flows . 130

Table 6.9 Global routing congestion analysis on the final placements obtained

from the No timing-driven placement, Net-weighted timing-driven place-

ment and Integrated Timing Optimization and Placement flows 131

Table 6.10 Runtime comparison between the No timing-driven placement, Net-

weighted timing-driven placement and Integrated Timing Optimization

and Placement flows . 132

www.manaraa.com

xii

LIST OF ALGORITHMS

Algorithm 2.1 The quadratic placement algorithm 12

Algorithm 2.2 Quadratic placement algorithm with force-vector modulation 29

Algorithm 2.3 Best-choice clustering with placement information 44

Algorithm 2.4 The FastPlace algorithm . 47

Algorithm 2.5 The RQL algorithm . 48

Algorithm 3.1 Mixed-size legalization algorithm 50

Algorithm 3.2 The Iterative Clustering algorithm 52

Algorithm 3.3 Macro-block legalization using simulated annealing 57

Algorithm 6.1 The ITOP algorithm . 121

www.manaraa.com

xiii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Dr. Chris Chu, for giving

me the opportunity to work under his guidance at Iowa State University. As a friend and

a mentor, his motivating and enlightening discussions, timely suggestions and constructive

criticisms have been a major driving force during the course of my research.

I am also grateful to Dr. Charles Alpert and Dr. Gi-Joon Nam at IBM Austin Research

Lab., who were always open to discussion, irrespective of the number of times I knocked on

their door during the course of a day! Without a doubt, I have immensely benefitted from

the discussions, feedback and their friendship. Furthermore, I am thankful to Dr. Maria

Axenovich, Dr. Degang Chen, Dr. Randall Geiger and Dr. Akhilesh Tyagi for taking their

time to serve on my Ph.D. committee and providing valuable feedback on my work.

Thanks are also due to Pam Myers for her administrative and technical support, and to

my friends in our research group for all their help during the course of my stay at Iowa State

University.

From infancy to adulthood, the friendship and guidance of my parents has been a key

factor in determining where I am today. I would like to express my heartfelt gratitude for their

constant love, support and encouragement in all my endeavors. I would also like to thank my

father and mother-in-law for their affection and constant prayers. Last but not the least, to

my wife - my sounding board, cheerleader and pillar of strength. The last few years would

have been extremely difficult without you being constantly by my side.

www.manaraa.com

xiv

ABSTRACT

Placement is a critical component in the physical synthesis of nanometer-scale integrated

circuits. Placement of circuit modules determines to a large extent interconnect length and

routing resource demand. Interconnect length has a direct impact on the interconnect delay,

which has become the determining factor of circuit performance in nanometer-scale process

technology. In addition, interconnect length has a direct impact on the circuit power. Hence,

the quality of the placement significantly affects the ability of a physical synthesis tool or

designer to achieve design closure.

In this work, efficient and high quality placement techniques have been developed for the

physical synthesis of multi-million gate integrated circuits in the nanometer regime. The focus

of these techniques are: (a) global placement and legalization of mixed-size circuits to minimize

interconnect length, circuit power and routing resource demand, and (b) incremental physical

synthesis via integrated timing optimization and placement to achieve timing closure.

The effectiveness of the techniques is demonstrated by: (a) comparing them with existing

approaches that perform integrated circuit placement, and (b) embedding them within a state-

of-the-art industrial physical synthesis tool that is used in the design of high performance

integrated circuits in the 65nm and 45nm process technology nodes.

www.manaraa.com

1

CHAPTER 1. GENERAL INTRODUCTION

1.1 Integrated Circuit Placement

The placement problem can be defined as follows: Given a chip layout and a circuit con-

sisting of modules with input and output terminals that are connected in a specific manner.

Determine the locations of the modules, such that there is no overlap among them and a

specified objective is optimized. The inputs to the placement problem are: (a) the module de-

scriptions, consisting of the shapes, sizes and terminal locations on the modules, (b) the netlist,

describing the interconnection between the terminals of the modules, and (c) the chip-layout,

specifying the dimension, orientation and spacing information of the feasible locations on the

chip where the modules need to be placed. For two-dimensional placement, the output is a

list of x- and y-coordinates for all the modules such that no two modules overlap in the final

layout.

Placement is a critical step in the physical design of nanometer-scale integrated circuits.

It is a key factor in determining the performance of the circuit. The reason being, placement

of circuit modules determines to a large extent interconnect length and hence, delay. With

semiconductor process technology advancing into the nanometer regime, interconnect delay

has become the determining factor of circuit performance. Hence, the quality of the placement

significantly impacts the performance of the circuit. Placement also impacts the subsequent

routing stage. A poor placement can lead to an increase in routing resource demand, leading

to a difficult or sometimes impossible routing task. Among other factors, a bad placement can

significantly increase circuit power. Power dissipation can also causes excessive heat, which

leads to other problems such as variability and cost of cooling. More importantly, circuit power

affects the reliability of the design, with low-power designs typically being more reliable.

www.manaraa.com

2

Some of the key challenges faced by placement algorithms in the nanometer regime are:

• Circuit Size: Circuits today contain millions of modules that need to be placed. Hence,

in addition to obtaining high-quality solutions, placement algorithms have to be efficient

and scalable with circuit size. Efficient algorithms lead to a fast turn-around time and

more importantly, permit designers to make iterative improvements to layouts to achieve

the desired performance.

• Mixed-size Circuits: With a steady increase in the reuse of pre-designed macro-blocks

like IP cores etc., circuits often contain a combination of a large number of macro-blocks

and millions of standard-cells that need to be placed simultaneously. This design style

known as mixed-size design, complicates the placement step due to the large difference

in the sizes of the modules (Figure 1.1).

• Placement Blockages: Often designers fix the positions of certain critical modules like

embedded memories and analog blocks. These components appear as fixed macros or

blockages during placement and they present a highly fragmented chip layout in which

the movable modules need to be placed (Figure 1.1).

• White Space: Circuits today have a large amount of white space. It is quite common

for large-scale circuits to have chip utilizations that are as low as 20–30 %, indicating a

large amount of white space (Figure 1.1). This is required to provide room for timing

optimization transforms like buffer insertion and gate sizing, which either add new gates

to the circuit or increase the area of the existing gates in the circuit. White space is also

required for the subsequent routing stage. Hence, in addition to satisfying the primary

design objectives, placement algorithms need to perform white space management.

• Physical Synthesis for Timing Closure: Placement can no longer be considered as

an independent step in the design of high performance integrated circuits. Due to the

dominance of interconnect delay in the nanometer regime, placement algorithms need to

closely interact with timing optimization transforms like buffer insertion, gate sizing, and

logic re-synthesis to achieve timing closure. Hence, placement algorithms need to operate

www.manaraa.com

3

Figure 1.1 Mixed-size circuit with placement blockages and significant

white space. The gray regions (medium shade) represent the

placement blockages, the light-red boxes (dark shade) represent

the movable macro-blocks, the light-brown boxes (pale shade)

represent the standard-cells and the white regions represent the

empty space in the design.

within a “physical synthesis” flow, where the placement and timing optimization steps

are performed multiple times in an iterative manner until the circuit timing requirements

are achieved (Figure 1.2).

• Power Dissipation in Global Interconnect: One of the major consumers of the

dynamic (switching) power in nanometer-scale circuits is the global clock distribution

network. The reason being, it usually switches during every clock cycle. The clock

network is primarily determined by the placement of the clocked elements in the circuit

(e.g., latches, flip-flops and other dynamic macros). Hence, in addition to handling the

non-clocked (logic) modules in the circuit, placement algorithms need to incorporate

special techniques to optimize the placement of the clocked elements. These techniques

are required to minimize clock network wire length and consequently power, without

degrading the clock skew or circuit timing.

www.manaraa.com

4

Due to its complexity, placement is typically performed in three stages:

1. Global Placement: During global placement, the non-overlapping constraint among

the modules is relaxed. The modules are then moved until they are reasonably distributed

over the placement region. The output of global placement usually contains overlap

among the modules that needs to be resolved.

2. Legalization: The legalization stage takes in as input a global placement solution and

resolves the overlap among the modules to create a “legal” (overlap free) placement.

Typically, legalization tries to perturb the modules by a small amount so as to preserve

the characteristics of the input global placement solution.

3. Detailed Placement: Detailed placement tries to further optimize the placement ob-

jective (for e.g., wire length) by performing some local movement of the modules. The

legality of the placement is usually preserved during this stage.

Among the three, global placement happens to be the most important stage of placement.

The reason being, global placement determines the relative locations of the modules on a global

scale. Whereas, the remaining stages of placement only make local changes to the module

locations, thereby having a limited impact on the overall placement solution. Therefore, the

final solution quality is heavily dependant on, and dictated by the quality of global placement.

In addition, this is the most time-consuming stage of placement.

This dissertation describes the placement techniques that have been developed to address

the key challenges of nanometer-scale integrated circuit placement. Specifically, the developed

techniques are:

• Efficient and high quality wire length driven global placement techniques to handle multi-

million gate mixed-size circuits containing numerous placement blockages in the chip

layout. In addition to minimizing the wire length, these techniques also perform white

space management to reserve space for the timing optimization and routing steps of

physical synthesis.

www.manaraa.com

5

• Effective legalization techniques for macro-block and standard-cell legalization during

mixed-size circuit placement.

• Placement techniques that simultaneously optimize circuit timing (weighted wire length)

and clock power (placement of clocked elements like latches and flip-flops) within a phys-

ical synthesis flow.

• An integrated timing optimization and placement technique to achieve timing closure

within a nanometer-scale physical synthesis flow.

The global placement and legalization techniques outlined above have been implemented

within two global placers namely, FastPlace [65,67,68] and RQL [66]. The remaining techniques

have been embedded within a state-of-the-art industrial physical synthesis tool PDS [3, 64].

1.2 Dissertation Organization

This section describes the organization of the remainder of this dissertation. This disser-

tation is essentially organized in two parts:

Part I: Placement as a point tool

This part describes the global placement and legalization techniques that are implemented

within the FastPlace and RQL placement algorithms. In this part, placement is treated

as a point tool. In other words, it is not combined with any of the other steps comprising

a physical synthesis flow. The implemented techniques are evaluated on the primary

objective for placement – total wire length of the circuit. Within a physical synthesis

flow, the focus of this part is highlighted by the first shaded box in Figure 1.2. Specifically,

Chapter 2 describes the global placement techniques that have been developed to handle

multi-million gate mixed-size circuits. This is followed by Chapter 3 which describes the

mixed-size legalization techniques to handle macro-block and standard-cell legalization.

Finally, Chapter 4 compares the FastPlace and RQL algorithms with existing academic

techniques that perform integrated circuit placement.

www.manaraa.com

6

Part II: Placement in a physical synthesis flow

This part describes the following techniques that are implemented within a nanometer-

scale physical synthesis flow: (a) placement techniques to handle clock network based

placement constraints within a global timing-driven placement framework, and (b) tech-

niques to achieve timing closure by integrating placement and timing optimization during

physical synthesis. The focus of these techniques is highlighted by the second shaded box

in Figure 1.2. Specifically, Chapter 5 describes a clock constraint aware timing-driven

placement technique. This is followed by Chapter 6 that describes an integrated tim-

ing optimization and placement technique. This part also evaluates all the placement

techniques described in this dissertation within a physical synthesis flow. It combines

the techniques developed in Chapter 5 and Chapter 6 with wire length driven initial

placement using RQL, and tests their effectiveness by performing physical synthesis on

high performance integrated circuits in the 65nm and 45nm process technology nodes.

Finally, this dissertation concludes with some key insights and observations in Chapter 7.

www.manaraa.com

7

Initial Placement

Clock Insertion
and Optimization

Detailed Placement
and Optimization

Fine Timing Optimization

Net-weighting and
Timing-driven Placement

Coarse Timing Optimization

Routing

Post Route Optimization

Synthesized Netlist

Finish

Focus of this
research

Initial Placement

Clock Insertion
and Optimization

Detailed Placement
and Optimization

Fine Timing Optimization

Net-weighting and
Timing-driven Placement

Coarse Timing Optimization

Routing

Post Route Optimization

Synthesized Netlist

Finish

Focus of this
research

Figure 1.2 An example nanometer-scale physical synthesis flow.

www.manaraa.com

8

PART I

PLACEMENT AS A POINT TOOL

www.manaraa.com

9

CHAPTER 2. GLOBAL PLACEMENT

2.1 Introduction

Total wire length minimization happens to be the most common objective during global

placement. Minimizing the total wire length typically has a good correlation with design

routability as it can minimize the routing resource demand (though in some cases excessive

packing of modules can cause routing hot-spots leading to inferior or sometimes impossible

routing). It also has a direct impact on circuit performance. Since circuit delay in nanometer-

scale integrated circuits is dominated by interconnect delay, minimizing the interconnect length

leads to shorter wires with lesser delay. Finally, it also impacts circuit power. Circuit power is

typically dominated by the dynamic power which is associated with the switching activity of

the gates in the circuit. Minimizing interconnect length leads to a decrease in the capacitive

load driven by the gates. This in turn decreases the dynamic power.

In addition to minimizing the total wire length of the circuit, global placement techniques

also need to perform white space management. Circuits today have a large amount of white

space that needs to be effectively distributed. The key reasons for doing so are to reserve

space for timing optimization transforms like buffer insertion and gate sizing, and to improve

the routability of the circuit by alleviating placement congestion. White space management

is typically performed by setting a density target for the entire circuit. The density target is

defined as follows: If we impose a regular grid structure over the placement region, then the

density of a bin in this grid is defined as the ratio of the total area of the movable modules

to the total available free-space within the bin. The density target essentially specifies the

maximum permissible density within any bin in the regular grid structure. To satisfy the

density target constraint, all the bins in the placement region must have a density less than or

www.manaraa.com

10

equal to the density target.

This chapter describes efficient and high quality wire length driven global placement tech-

niques to handle multi-million gate mixed-size circuits. In addition to minimizing placement

wire length, these techniques also handle the density target constraint to alleviate placement

congestion and effectively distribute the white space in the circuit.

Based on their approach, existing global placement techniques can be broadly classified as

follows:

1. Simulated Annealing : The main advantage of simulated annealing is that it is a general

heuristic that can be used to simultaneously optimize a combination of design objectives

like wire length, timing, power, etc,. Simulated annealing based approaches typically

obtain high-quality solutions, but placers using this approach normally suffer from ex-

tremely long runtimes. As a result, they cannot be used to place nanometer-scale circuits

with millions of modules. TimberWolf [58,62] is a well known placer in this category.

2. Top-down Partitioning : Partitioning-based approaches recursively divide the circuit and

the placement area using a min-cut objective to give a placement of the circuit. Recent

placers in this category are Capo [6], Dragon [72], Fengshui [2] and NTUPlace2 [11].

Although partitioning-based placers are quite efficient, the min-cut objective does not

accurately capture the real objective of minimizing the placement wire length, and this

can lead to potentially inferior solutions.

3. Hybrid Placement : To handle mixed-size circuits, placers also use a hybrid approach

where they combine partitioning, floorplanning and placement to simultaneously place

the macro-blocks and standard-cells in the circuit. Representative examples of hybrid

placers are Capo9.0 [1], Capo10.2 [57] and FLOP [75]. Since all these techniques primarily

rely on partitioning to seed the subsequent floorplanning and/or placement steps, they

can suffer from the same issues as the partitioning-based approaches described above.

4. Analytical Placement : The core of analytical placement approaches is an objective func-

tion that is minimized by methods of mathematical analysis. Based on their objective

www.manaraa.com

11

function, analytical placers can be further divided into two categories:

(a) Nonlinear Objective: Approaches in this category typically use an approximation

of the linear wire length like the log-sum-exponential function [47], and nonlinear

optimization techniques to perform placement. Examples in this category being

APlace [32], mPL [8] and NTUPlace3 [12]. Results of the recently held placement

contests [43,44] show that placers based on the log-sum exponential approximation

can also obtain high-quality placement solutions, but they take a significant amount

of runtime to converge to a solution.

(b) Quadratic Objective: The objective function is quadratic and can hence be mini-

mized by solving a system of linear equations. Representative examples of placers

in this category are GORDIAN [36], Kraftwerk [21,61], BonnPlace [4], mFAR [28],

FastPlace [65], FDP [35], hATP [45] and RQL [66].

Due to its inherent nature, quadratic placement is an attractive approach for designing

efficient placement algorithms. The reason being, minimizing the quadratic objective is equiv-

alent to solving a system of linear equations. This can be done quite efficiently using SOR or

conjugate gradient based methods. However, quadratic placement faces two problems:

• The quadratic objective results in a placement with significant overlap among the mod-

ules. To resolve this overlap a spreading step has to be employed in conjunction with

the quadratic solver. Thus, quadratic placement algorithms typically follow an iterative

procedure comprising of: (a) the quadratic optimization step, which minimizes the wire

length, (b) the spreading step, which resolves module overlap. This is shown in Algo-

rithm 2.1. To overcome this drawback of quadratic placement, an efficient spreading

technique is required that does not adversely impact the placement wire length.

• The quadratic objective is only an indirect measure of the linear wire length. Conse-

quently, quadratic placement on its own does not yield the best possible result in terms

of placement wire length. Hence, effective techniques are required to minimize the linear

wire length within a quadratic placement framework.

www.manaraa.com

12

Algorithm 2.1 The quadratic placement algorithm

1: solve initial quadratic program

2: repeat

3: spread modules to reduce overlap

4: calculate spreading forces for all the modules

5: add spreading forces to quadratic program formulation

6: solve the quadratic program

7: until (modules are distributed over the placement region)

This chapter describes the techniques that have been developed to address the key issues

faced by quadratic placement algorithms. These techniques have been implemented in two

state-of-the-art placers namely, FastPlace [65, 67, 68] an academic placer developed at Iowa

State University and RQL [66] an industrial placer currently being used within the placement

driven synthesis flow at IBM.

2.2 Key Contributions of This Work

The key contributions of this work in the area of global placement are:

• An efficient Density Aware Module Spreading technique to spread the modules during the

early stages of global placement. This technique roughly maintains the relative ordering

of the modules as obtained by solving the quadratic program in both the horizontal and

vertical directions.

• An effective linearization technique called Force-vector Modulation that restructures the

placement at a global scale to minimize wire length without sacrificing the degree of

spreading.

• An Iterative Local Refinement technique to reduce the wire length based on the half-

perimeter wire length measure. This technique is applied on a coarse global placement

and is highly effective in simultaneously reducing the wire length and spreading the

modules. It can also effectively handle placement blockages and placement congestion

constraints.

www.manaraa.com

13

• A multilevel placement framework using circuit clustering, that incorporates the above

techniques during global placement so as to handle multi-million gate designs.

The rest of this chapter is organized as follows: Section 2.3 describes the generic quadratic

placement methodology. This is followed by Sections 2.4 – 2.7 that describe the individual

components in detail. Finally, Section 2.8 gives an overview of the FastPlace and RQL global

placement algorithms.

2.3 Quadratic Placement Methodology

The quadratic placement approach uses the analogy of springs to model the connectivity

between the modules of a circuit. This is depicted in Figure 2.1(a) which shows a circuit

consisting of two movable modules i and j and one fixed module f . The circuit consists of

two nets, net {f, i} connecting modules f and i, and net {i, j} connecting modules i and j.

Figure 2.1(b) shows the corresponding spring system with the two-pin nets being replaced by

the springs in the system.

(a)

Fixed
Module

Movable
Modules

if j

(b)

if j

(a)

Fixed
Module

Movable
Modules

if j

(a)

Fixed
Module

Movable
Modules

if jif j

(b)

if j

(b)

if jif j

Figure 2.1 Quadratic placement approach and its analogy to a spring sys-

tem. (a) Connections in a circuit (b) Corresponding spring

system.

During quadratic placement, the total potential energy of the springs1 is minimized to

produce a placement solution. Minimizing the total potential energy of the springs results in

1which is a quadratic function of their length

www.manaraa.com

14

a force equilibrium state in the spring system. In this respect, quadratic placement is also

commonly referred to as force-directed placement.

The circuit netlist that describes the connectivity between the modules is a weighted hy-

pergraph G = (V,E), where V = {v1, ..., vm, vm+1, ..., vn} is the set of vertices representing

the modules and E = {e1, e2, ..., ek} is the set of hyperedges representing the connections or

nets between the modules. In the netlist, modules v1, ..., vm are assumed to be movable and

modules vm+1, ..., vn are assumed to be fixed. Also, each net ej ∈ E has a weight wej
that

reflects the criticality of this net. Let, (xi, yi) represent the coordinates of the center of module

vi ∈ {v1, ..., vm}. Then, a placement of the circuit is given by the two m-dimensional vectors

x = (x1, x2, ..., xm) and y = (y1, y2, ..., ym).

In order to model the circuit by a spring system, the hypergraph needs to be transformed

into a graph by using a suitable model. Circuits typically contain hyperedges of degree two or

more (or in other words, two-pin and multi-pin nets). Hence, the transformation is equivalent

to saying that each multi-pin net in the circuit needs to be transformed into a set of two-pin

nets. This transformation can be performed using the traditional clique or star models (Figure

2.2) or the hybrid net model proposed in [65], where a clique model is used for two-pin and

three-pin nets and a star model is used for nets with four or more pins. For the following

discussion on quadratic placement, it is assumed that this transformation has been applied.

(a)

Multi-pin net

(b)

Clique model

Star module

(c)

Star model

(a)

Multi-pin net

(a)

Multi-pin net

(b)

Clique model

(b)

Clique model

Star module

(c)

Star model

Star module

(c)

Star model

Figure 2.2 Clique and star models for a multi-pin net.

From Figure 2.1, consider the net between the movable modules i and j in the circuit. Let

www.manaraa.com

15

Wij be its weight. Then the cost of the net between the two modules is:

1

2
Wij{(xi − xj)

2 + (yi − yj)
2} (2.1)

For the net between movable module i and fixed module f , the cost of the net is given by:

1

2
Wif{(xi − xf)2 + (yi − yf)2} (2.2)

The objective function that sums up the cost of all the nets can then be written as:

Φ(x, y) =
1

2

∑

1≤i<j≤n

Wij{(xi − xj)
2 + (yi − yj)

2} (2.3)

This can be written succinctly in matrix notation [23] as:

Φ(x, y) =
1

2
xT Cx + dT

x x +
1

2
yT Cy + dT

y y + constant (2.4)

where C is an m×m symmetric positive definite matrix and dx, dy are m-dimensional vectors.

Since equation (2.4) is separable into Φ(x, y) = Φ(x)+Φ(y), only the x-dimension is considered

for subsequent discussion, which is:

Φ(x) =
1

2
xT Cx + dT

x x + constant (2.5)

From expression (2.1), the cost in the x-direction between the two movable modules i and j is:

1

2
Wij(x

2
i + x2

j − 2xixj) (2.6)

If cij is the entry in row i and column j of matrix C, then the first and second terms in

expression (2.6) contribute Wij to cii and cjj respectively. The third term contributes −Wij

to cij and cji.

From expression (2.2), the cost in the x-direction between movable module i and fixed

module f is:

1

2
Wif (x2

i + x2
f − 2xixf) (2.7)

The first term in expression (2.7) contributes Wif to cii. The third term contributes −Wifxf to

the vector dx at row i and the second term contributes to the constant part of equation (2.5).

www.manaraa.com

16

The objective function (2.5) is then minimized by solving the system of linear equations

represented by:

∂Φ

∂x
= Cx + dx = 0. (2.8)

Equation (2.8) thus gives the solution to the unconstrained problem of minimizing the quadratic

objective function in (2.5).

2.4 Density Aware Module Spreading

Solving equation (2.8) essentially minimizes the quadratic objective function without con-

sidering the overlap among the modules. Therefore, the resulting placement has significant

module overlap. To reduce the overlaps among the modules and spread them over the place-

ment region, this work uses an efficient and effective Density Aware Module Spreading algo-

rithm.

In [52] Ren et al. proposed a diffusion based spreading algorithm for placement legalization.

Based on the density map of the placement region, their scheme uses the diffusion process to

move the modules from high to low concentration regions. The technique proposed in [52] can

be viewed as global diffusion, because modules will spread as long as there exists a density

gradient among the bins in the current density map. However, using such an approach within

global placement will cause excessive spreading and adversely impact placement wire length.

One method to control the degree of spreading within diffusion is to reduce the number

of time steps [52] taken during module movement. In the limit, the module movement can

be restricted to only its neighboring bins. Such a technique can be considered as a localized

version of the diffusion algorithm. In principle, this technique is similar to one that equalizes

the densities of adjacent bins by migrating the modules between them. This is the underlying

principle of the Density Aware Module Spreading algorithm. By applying spreading over mul-

tiple iterations along with quadratic optimization, the modules are gradually distributed over

the placement region.

During module spreading, an M×N (rows×columns) regular bin structure (B) is initially

imposed on the placement region. The area of each bin in the regular bin structure is such

www.manaraa.com

17

that on average it can accommodate about four modules. Based on the current placement, for

each bin i in B, the utilization of the bin (Ui) is then computed. Ui is defined as the ratio of

the total area of all the modules overlapping with bin i to the bin area. Once the utilization

has been determined, the modules are then spread over the placement region based on their

respective bins and its current utilization. Module spreading is independent and similar in both

the x- and y-dimensions. Hence, it is described by considering the case where the modules

are shifted in the x-dimension. In addition, since circuits typically contain both standard-cells

and macro-blocks, the subsequent discussion first describes module spreading as applied to

standard-cells and then extends it to handle macro-blocks.

2.4.1 Spreading of Standard-cells

Module spreading for standard-cells is essentially a two step process: (a) construction of

an irregular bin structure for each row in the original bin structure and (b) linear mapping of

the cells from the regular to the irregular bin structure. Given below is a detailed description

of these steps for one of the rows in the bin structure.

Consider a particular row in the regular bin structure. Let the utilization of all the bins in

this row be as shown in Figure 2.3(a). Based on the utilization of all the bins in this row, an

irregular bin structure reflecting the current bin utilization is constructed. This is as shown in

Figure 2.3(b). To get the equation for the irregular bin structure, from Figure 2.3 let:

• Ui: Utilization of bin i in the regular bin structure.

• OBi: Coordinate of the boundary of bin i in the regular bin structure.

• NBi: Coordinate of the boundary of bin i in the irregular bin structure.

Then,

NBi =
OBi−1(Ui+1 + δ) + OBi+1(Ui + δ)

Ui + Ui+1 + 2δ
(2.9)

Since the intuition behind module spreading is to equalize the utilization among adjacent

bins, equation (2.9) changes the boundary of bin i such that it averages the utilization of bin

i and bin i + 1. The reason for having the parameter δ is as follows: Let, δ = 0 and Ui+1 = 0,

www.manaraa.com

18

NBi

Bin
i

Bin
i+1

Ui

Ui+1

OBi-1 OBi+1OBi

Bin Utilization(a)

(b)

NBi

Bin
i

Bin
i+1

Ui

Ui+1

OBi-1 OBi+1OBi

NBiNBi

Bin
i

Bin
i+1

Ui

Ui+1

OBi-1 OBi+1OBi

Bin
i

Bin
i+1

Ui

Ui+1

OBi-1 OBi+1OBi

Bin UtilizationBin Utilization(a)

(b)

(a)

(b)

Figure 2.3 Bin structure and utilization during Density Aware Module

Spreading for standard-cells. (a) Regular bin structure and ini-

tial bin utilization (b) Irregular bin structure and utilization

after spreading.

then from equation (2.9) it can be seen that, NBi = OBi+1 and NBi+1 = OBi, which results

in a cross-over of the bin boundaries in the irregular bin structure. This in turn results in an

improper mapping of the cells. To avoid this problem, the parameter δ is empirically set to a

value of 1.5.

In the second step of module spreading, every cell present in a particular bin in the regular

bin structure is then linearly mapped to the corresponding bin in the irregular bin structure.

As a result of this mapping, cells in bins with a high utilization will spread out to reduce the

utilization of the bin and the overlap among themselves. For performing the linear mapping

of cells, if:

• xj : x-coordinate of cell j in bin i before mapping.

• x′
j : x-coordinate of cell j in bin i after mapping.

www.manaraa.com

19

Then,

x′
j =

NBi(xj −OBi−1) + NBi−1(OBi − xj)

OBi −OBi−1

(2.10)

To have a tight control on the displacement of the cells during module spreading a movement

control parameter αx (< 1) is used. Once the coordinates of cell j have been obtained after

mapping (equation 2.10), the actual distance moved by the cell is αx | x
′
j − xj |. During each

iteration of global placement, the movement control parameter is inversely proportional to the

maximum utilization among all the bins in the regular bin structure. It has a small value during

the early stages of placement. As a result, cells will move by a very small distance during the

initial placement iterations. When the placement is reasonably spread out (as reflected by the

maximum bin utilization), the cells will not have a tendency to shift over large distances. The

movement control parameter can then take a larger value to accelerate convergence.

Module spreading for standard-cells is illustrated in Figure 2.4, which shows the distribution

of the cells before and after spreading for a particular row in the regular bin structure. From

Figure 2.4(b), it can be seen that the cells in bin i have spread out to reduce the overlap

amongst themselves and also decrease the bin utilization.

To spread the cells in the y-dimension an irregular bin structure is constructed for each

column in the regular bin structure. This is followed by the linear mapping of the cells in the

y-dimension.

2.4.2 Spreading of Macro-blocks

Typically, the area of a standard-cell is smaller than the area of a bin in the regular bin

structure. Hence, the movement of a cell has an influence on the utilization of only its adjacent

bins. Therefore, for the purpose of spreading, a cell is assumed to be completely contained

by a bin if the center of the cell is located within the bounds of the bin. On the other hand,

macro-blocks span multiple bins in the regular bin structure. Hence, the movement of a macro

will influence the utilization of all the bins spanned by the macro. Therefore, to move a

macro during module spreading, a larger region proportional to the size of the macro should

be considered for constructing the irregular bin structure and subsequent linear mapping.

www.manaraa.com

20

l
j

k

NBi

j

k

l

Bin
i

Bin
i+1

OBiOBi-1 OBi+1

(a)

(b)

l
j

k

NBi

j

k

l

Bin
i

Bin
i+1

OBiOBi-1 OBi+1

(a)

(b)

Figure 2.4 Bin structure and cell distribution during Density Aware Mod-

ule Spreading for standard-cells. (a) Regular bin structure and

cell distribution before spreading (b) Irregular bin structure and

cell distribution after spreading.

Spreading of the macro-blocks follows the same two-step process as the standard-cells. The

only difference being the construction of the irregular bin structure. Figure 2.5 illustrates

the construction of the irregular bin structure for spreading in the x-dimension. From Figure

2.5(a), for the regular bin structure, let:

• x span: Total number of columns spanned by the macro.

• y span: Total number of rows spanned by the macro.

• N : Total number of bins spanned by the macro (= x span× y span).

• OBL: x-coordinate of the left boundary of the leftmost set of bins spanned by the macro.

• OBR: x-coordinate of the right boundary of the rightmost set of bins spanned by the

macro.

www.manaraa.com

21

UR

x_span

OBL – x_span OBROBL OBR + x_span

NBL NBR

Regular Bin
Structure

Macro
Block

UL UC(a)

(b)

y_span UR

x_span

OBL – x_span OBROBL OBR + x_span

NBL NBR

Regular Bin
Structure

Macro
Block

UL UC(a)

(b)

y_span

Figure 2.5 Bin structure construction for macro-block spreading. (a) Reg-

ular bin structure and utilization calculation based on the

bins spanned by a macro-block (b) New bin boundaries for

macro-block spreading.

• UC : Sum of the utilizations of the N bins spanned by the macro (shaded region with

lines to the bottom right).

• UL: Sum of the utilizations of N bins to the left of the macro. (shaded region with lines

to the bottom left).

• UR: Sum of the utilizations of N bins to the right of macro. (shaded region with lines

to the bottom left).

From Figure 2.5(b), for the unequal bin structure, let:

• NBL: x-coordinate of the left boundary of the leftmost set of bins spanned by the macro.

www.manaraa.com

22

• NBR: x-coordinate of the right boundary of the rightmost set of bins spanned by the

macro.

Then,

NBL =
(OBL − x span)(UC + δ) + OBR(UL + δ)

UL + UC + 2δ
(2.11)

NBR =
OBL(UR + δ) + (OBR + x span)(UC + δ)

UR + UC + 2δ
(2.12)

For performing the linear mapping, if:

• x: x-coordinate of the macro before mapping.

• x′: x-coordinate of the macro after mapping.

Then,

x′ =
NBR(x−OBL) + NBL(OBR − x)

OBR −OBL

(2.13)

2.4.3 Handling the Density Target Constraint

To handle the density target constraint and prevent excessive spreading, the module spread-

ing algorithm uses an effective bin blocking scheme during the linear mapping step. Bin block-

ing is performed as follows: For every bin i in the regular bin structure a scaled density value

si is determined. The scaled density is defined as the average density of an x × y window of

bins around the bin under consideration. If si is lower than the density target for the bin, it

is blocked during module spreading. Otherwise, the entire x× y window of bins is considered

for spreading.

Please note, bin blocking does not alter the construction of the irregular bin structure.

It only prevents modules from being mapped to the irregular bin structure during the linear

mapping step of module spreading. Bin blocking effectively prevents unnecessary spreading in

regions that are already below the density target. This in turn improves the placement wire

length.

www.manaraa.com

23

2.4.4 Addition of Spreading Forces

It should be noted that module spreading does not physically move a module to a new

location. It only provides a “target location” for the module based on the current utilization

map of the placement region. The new location for a module is actually determined during the

subsequent quadratic optimization step. To enable module movement to the target location

as determined by module spreading, a spreading force needs to be added to the module during

each iteration of global placement.

A spreading force is added to a module by connecting it to an associated fixed-point via

a pseudo-net having an appropriate net-weight. Fixed-point and pseudo-net addition for a

module i in the circuit is depicted in Figure 2.6. The figure shows module i being connected to

three other modules in the circuit netlist. The empty boxes in the figure represent the locations

of the modules before spreading and the shaded box for module i represents its location after

module spreading. From Figure 2.6, for module i if:

• NF (i): The Native Force on i due to its connections with the other modules in the

netlist.

• SF (i): The Spreading Force imposed on i to move it to its target location obtained from

module spreading.

The Spreading Force vector on the module is equal in magnitude and opposite in direction to

the Native Force vector experienced by the module in its target location.

The location of the fixed-point and the weight on the pseudo-net are key elements that

affect the stability of the spreading and the placement wire length. If the fixed-point is too

close to the module, then the spreading force will dominate the native force during quadratic

optimization. This will result in extremely slow spreading and also severely degrade the wire

length. Adding the fixed-point to the chip boundary for large designs makes the spreading

force behave as a “constant-force”. Constant forces are hard to control and may lead to a

“blow-up” of the placement - creating “donuts” or empty regions in parts of the placement.

Therefore, an on-chip fixed-point is used (shown by the hollow circle in Figure 2.6 whose

www.manaraa.com

24

(i)

(i)

NF(i)

SF(i)

Fixed-point

Pseudo-net

Target
Position

Original
Position(i)

(i)

NF(i)

SF(i)

Fixed-point

Pseudo-net

Target
Position

Original
Position

Figure 2.6 Spreading force addition on a module during Density Aware

Module Spreading by using an on-chip fixed-point.

location is in between the two cases discussed above. The fixed-point to module distance is

set proportional to the distance moved by the module during module spreading. Specifically,

the fixed-point distance DFP = K1 + K2 × f(module displacement), where K1 = K2 =

0.25(chip diagonal) and module displacement is the distance between the original and target

location of a module as shown in Figure 2.6. If the fixed-point falls outside the chip boundary,

it is added at the intersection of the spreading force vector with the chip boundary. This

ensures that modules are always placed within the placement region during the subsequent

quadratic optimization.

The reason behind a constant and variable term in the fixed-point distance is two-fold: (a)

if a module does not move during spreading, the constant term ensures that there is still a

force on the module to hold it at its current location and (b) if a module moves by a large

distance during spreading, then the distance of the fixed-point from the module should be

proportional to this movement, so as to enable this large displacement during the subsequent

quadratic optimization step.

Since a new fixed-to-movable connection is added to the netlist via the fixed-point, we

www.manaraa.com

25

know from expression (2.2) and the subsequent analysis in Section 2.3, that only the diagonal

of matrix C and the dx and dy vectors need to be updated for each module. Hence, it takes

only a single pass of O(m) time (where m is the total number of movable modules in the

circuit) to regenerate the connectivity matrix for the next quadratic optimization step.

2.5 Placement Restructuring via Force-vector Modulation

As mentioned in Section 2.1, force-directed placement follows an iterative procedure that

comprises of a non-linear optimization step which minimizes wire length, followed by a spread-

ing step that adds “spreading forces” to reduce module overlap. One of the key problems with

force-directed placement is the fact that spreading forces strictly enforce the relative ordering

of the modules as obtained by solving the non-linear program. In other words, if a module is

placed to the right of another module, the spreading forces will not allow the two to flip sides,

even if it results in an improvement in the half-perimeter wire length. Although this property

simplifies spreading, it can adversely impact the wire length. The reason being, relative cell

ordering is often established during the early stages of placement, starting from the initial

solution to the unconstrained non-linear program. This is when there exists significant module

overlap. As a result, spreading forces are often arbitrary and are likely to do the most damage

to wire length.

To offset this disadvantage, force-directed placers use a variety of local optimization tech-

niques that change the relative ordering of the modules to improve the half-perimeter wire

length. Representative examples of these are Local Cost Optimization [28], BoxPlace [35, 70]

Relaxation Based Local Search [29,30]. By nature, such techniques do not have a global view

of the placement and can only improve the wire length in a local region. In addition, careful

engineering is required to interleave these techniques with the non-linear optimization and

spreading steps during global placement.

In contrast, this work uses a novel Force-vector Modulation technique to reorder the modules

and restructure the placement at a global scale. Force-vector modulation directly optimizes

the half-perimeter wire length during the non-linear optimization step and does not rely on

www.manaraa.com

26

indirect methods (e.g., local optimization) that are interleaved with global optimization. In

addition, force-vector modulation is a general technique that can be used within any force-

directed placer, and is independent of the objective function.

2.5.1 Spreading Forces During Global Placement

In force-directed placement, a module is being acted upon by two conflicting forces: (a)

the Native Force that attracts it to the other modules in the circuit due to the connections

in the netlist, and (b) the Spreading Force that tries to pull it to the sparse areas within the

placement region. During force-directed placement, a careful balance between the native and

spreading forces is required to achieve a good trade-off between the twin objectives of spreading

and wire length minimization.

To better understand the nature of the spreading forces, and their relationship with the

placement wire length, the spreading force magnitude for all the modules in the circuit was

tracked over successive iterations of global placement. Figure 2.7 shows a plot of the spread-

ing force magnitude for all the modules in the circuit during one of the iterations of global

placement.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 200 400 600 800 1000 1200

S
p
r
e
a
d
i
n
g

F
o
r
c
e

M
a
g
n
i
t
u
d
e

Module Index

Figure 2.7 Spreading force magnitude for all the modules in a circuit during

one of the iterations of global placement.

www.manaraa.com

27

From the plot, it can be seen that a small fraction of the modules have an extremely high

spreading force magnitude. From Section 2.4.4, we know that the spreading force on a module

is directly proportional to the native force acting on the module. Hence, a high spreading

force on a module could imply one or more of the following: (a) the module belongs to a large

number of nets in the circuit, (b) it could belong to net(s) that have a high net-weight and

are hence critical, or (c) the module is connected to distant modules like boundary IOs. In all

these cases, this module has a significant attraction to one or more of the other modules in the

circuit.

It was empirically observed that retaining the full spreading force magnitude for the mod-

ules with an extremely high spreading force resulted in a placement with a very high wire

length. Instead, by controlling the spreading force magnitudes for these modules, a substantial

decrease in the wire length was observed without sacrificing the degree of spreading.

2.5.2 Force-vector Modulation

The force-vector modulation technique, modulates the spreading force vectors within force-

directed placement. Modulation of spreading forces results in a modified distribution of the

spreading force magnitudes. As a result, the modules no longer move to the locations that

were originally dictated by the spreading forces. In fact, by carefully modulating the spreading

forces, the modules can be moved to their optimal locations as determined by the objective

function being used during global placement.

One of the methods for modulation, that is also used in this work, is as follows:

• Sort the modules in a non-decreasing order of their spreading force magnitude during

each iteration of global placement.

• Pick a fraction of the modules having a very high spreading force.

• Nullify the spreading force on these modules for the subsequent non-linear optimization.

This is shown in Figure 2.8 that depicts a plot of the modified spreading force magnitudes

due to nullification during one of the iterations of global placement. Typically, only a small

www.manaraa.com

28

fraction of around 5− 10% of the modules are picked for nullification during each iteration of

global placement. The reason being, nullifying the forces on a large number of modules could

significantly increase module overlap due to the modules being placed very close to each other

(or for that matter even on top of each other) during the non-linear optimization step. As the

placement progresses, the number of modules picked for nullification can be varied to achieve

a good trade-off between placement wire length and spreading.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 200 400 600 800 1000 1200

S
p
r
e
a
d
i
n
g

F
o
r
c
e

M
a
g
n
i
t
u
d
e

Module Index

Figure 2.8 Force-vector modulation by nullifying the top 10% of spreading

forces.

Due to the nullification of the spreading force on a small fraction of the modules, the only

force acting on the modules is the native force. As a result, the locations of these modules after

the subsequent non-linear optimization step will be determined solely due to their connections

to the other modules in the netlist. This is equivalent to optimizing the wire length objective

with no spreading constraints on these modules. As a result, they will be placed in their

optimal locations as determined by the objective function used during global placement.

Since this work uses a quadratic objective function for wire length minimization, Algorithm

2.2 now gives the modified version of the quadratic placement algorithm (Algorithm 2.1) with

force-vector modulation. As it can be seen, the only difference between the two algorithms is

www.manaraa.com

29

the addition of steps 5 and 6 in Algorithm 2.2.

Algorithm 2.2 Quadratic placement algorithm with force-vector modulation

1: solve initial quadratic program

2: repeat

3: spread modules to reduce overlap

4: calculate spreading forces for all the modules

5: rank modules based on the spreading force magnitude

6: modulate spreading forces for top x% of modules

7: add spreading forces to quadratic program formulation

8: solve the quadratic program

9: until (modules are distributed over the placement region)

2.5.3 Advantages of Modulation

The key advantages of using force-vector modulation are:

• Modulation of spreading forces results in a placement solution with a better wire length.

The reason being, the “modulated” modules are placed at their optimal locations as

determined by the wire length objective used during global placement.

• Modulation of spreading forces results in a reordering of the modules at a global scale.

Since the non-linear optimization step is used to perform the reordering, it occurs on a

global scale. As a result, modules no longer retain their relative ordering as obtained

after the initial non-linear optimization step. The significant decrease in the wire length

of the placement can be attributed to this change in the relative ordering of the modules.

• Modulation does not impact the degree of spreading. Since only a small fraction of the

modules are picked for modulation, the unmodulated modules will still shift towards their

target locations as determined during module spreading. In doing so, they contribute

towards spreading the placement.

• Modulation can be used within any force-directed placer, irrespective of the wire length

objective used during placement.

www.manaraa.com

30

2.5.4 Effect of Force-vector Modulation

Figure 2.9 illustrates the effect of force-vector modulation on an example circuit that con-

sists of a single net connecting five movable modules. The arrows in Figure 2.9(a) depict the

spreading forces on the modules during the current global placement iteration. It can be seen

that the shaded box has a very high associated spreading force (depicted by the thick arrow

heading outward from the box). The bold hatched rectangle represents the bounding box of

the net connecting the five modules. Initially, the half-perimeter wire length of the net is:

HPWL = 3 + 2 = 5 units, with 3 and 2 units corresponding to the width and height of the

bounding box. Figures 2.9(b) and 2.9(c) show the locations of the modules after the subsequent

quadratic optimization step. Figure 2.9(b) depicts the case with no modulation and Figure

2.9(c) depicts the case where the spreading force on the shaded box has been nullified for the

quadratic optimization step. From Figure 2.9(b), the shaded module is pulled all the way to

the top of the chip. As a result the wire length of the net is: HPWL = 4 + 4 = 8 units. On

the other hand, from Figure 2.9(c) since the spreading force on the shaded box is nullified,

it is placed in its quadratically optimal location with respect to its connections to the other

modules. This results in a wire length of: HPWL = 4 + 3 = 7 units, which is lesser than the

case without modulation. In addition, modulation does not impact the degree of spreading as

the other modules still spread based on their spreading forces.

Finally, Table 2.1 shows the effect of force-vector modulation on the placement wire length

for two industrial ASIC designs from the ISPD-2005 benchmark suite [44]. In the table:

Case I corresponds to running the generic quadratic placement algorithm (Algorithm 2.1)

and Case II corresponds to running the quadratic placement algorithm with force-vector

modulation (Algorithm 2.2). In both cases, the placer was run to satisfy the same density

target, and all placement results are after final placement legalization. From column four of

Table 2.1, it can be seen that force-vector modulation can achieve upto 1.95× reduction in the

legalized wire length without impacting the degree of spreading.

www.manaraa.com

31

(a)

Original Locations

HPWL: 3+2 = 5 units

With Modulation

HPWL: 4+3 = 7 units

(c)

No Modulation

HPWL: 4+4 = 8 units

(b)(a)

Original Locations

HPWL: 3+2 = 5 units

(a)

Original Locations

HPWL: 3+2 = 5 units

With Modulation

HPWL: 4+3 = 7 units

(c)

With Modulation

HPWL: 4+3 = 7 units

(c)

No Modulation

HPWL: 4+4 = 8 units

(b)

No Modulation

HPWL: 4+4 = 8 units

(b)

Figure 2.9 Effect of modulation on the module locations and net wire

length. (a) Original module locations and net wire length (b)

Module locations and net wire length without modulation (c)

Module locations and net wire length with modulation.

Table 2.1 Effect of force-vector modulation on the half-perimeter wire

length.

Half-Perimeter Wire Length (×e6)

Circuit No Modulation With Modulation

(Case I) (Case II)

Case I

Case II

adaptec1 252.11 128.84 1.95

bigblue1 168.74 114.47 1.47

www.manaraa.com

32

2.6 Iterative Local Refinement

As mentioned in Section 2.1, one of the key attractions of quadratic placement is the fact

that the quadratic objective can be efficiently minimized by solving a set of linear equations.

But, the quadratic objective is only an indirect measure of the linear (or half-perimeter) wire

length. For small circuits, the inaccuracy of quadratic wire length is not substantial and

quadratic placement techniques can still produce very competitive wire length. However,

for larger circuits, this inaccuracy becomes a major bottleneck in the quality of quadratic

placement techniques.

To offset this disadvantage, previous approaches to quadratic placement modify the quadratic

objective function to approximate the linear wire length. For example, GORDIAN-L [60] uses

an iterative net-weight adjustment technique to achieve linearization during quadratic place-

ment. Within GORDIAN-L, during each iteration of quadratic optimization, the quadratic

objective between any two modules is weighted by a constant additional net-weight. This

weight is inversely proportional to an approximation of the linear net-length connecting the

two modules during the immediately preceding iteration. This weight behaves as a variable

spring constant that increases with decreasing net-length, thereby serving to effectively min-

imize the wire length. Kraftwerk [61] uses a BoundingBox net model which, when combined

with the wire length linearization technique of GORDIAN-L can theoretically model the half-

perimeter wire length in an accurate manner during quadratic placement. Since the net-weights

rely on the actual module coordinates, which are constantly changing, these approaches have

two main disadvantages:

• Separate copies of the connectivity matrix (Section 2.3) need to be maintained to solve

the problem in the x- and y-dimensions.

• The net-weights need to be determined by an iterative technique, which in practice

requires some approximations to provide numerical stability to the solver. This can

potentially hurt both the runtime and solution quality of the solver.

Instead of modifying the quadratic objective, this work uses an efficient and highly effective

www.manaraa.com

33

technique called Iterative Local Refinement (ILR) to directly minimize the half-perimeter wire

length during placement. The ILR technique is a greedy heuristic that is used to refine a

coarse global placement (typically obtained after a few iterations of quadratic placement).

It iteratively improves the placement wire length while simultaneously spreading the modules

over the placement region. It has the ability to move the modules by a relatively large distance,

and hence can be used to modify the placement on a global scale. In addition, it can seamlessly

handle placement blockage and placement congestion constraints.

2.6.1 Bin Structure for Iterative Local Refinement

To estimate the module utilization in a given area and move the modules over the placement

region, the ILR technique employs a regular bin structure similar to the one used during module

spreading. During the first step of ILR the width and height of each bin is set to 5× that of the

bin used during module spreading. Such large bins are constructed to have a global view of the

current placement, and enable modules to move over long distances. This is done to minimize

the wire length of long nets that might span a large part of the placement region. During

subsequent steps, the width and height of the bins are gradually brought down to the values

used during module spreading. As a result, the movement of the modules gets progressively

localized.

2.6.2 Iterative Local Refinement for Simultaneous Spreading and Wire Length

Minimization

During each iteration of ILR, once the placement region has been binned, the source bin

for all the movable modules is determined. A source bin for a module is one in which it is

originally present before movement during the current ILR iteration. Each module is then

tentatively moved from its source bin to its eight neighboring bins. These neighboring bins are

denoted as the target bins for the module under consideration. For each tentative move, one

score is computed. For calculating the score, it is assumed that a module is moving from its

current position in a source bin to the same relative position in the target bin. This is shown in

www.manaraa.com

34

Figure 2.10, where the box in the center (with the solid outline) represents the source bin for a

particular module. The boxes with the dotted outlines represent the eight tentative locations

that are considered for score calculation during ILR. The score for each move is a weighted

sum of a wire length component and a utilization component. If all eight scores are negative,

the module will remain in its source bin. Otherwise, it is moved to the target bin with the

highest score.

Regular Bin
Structure
Regular Bin
Structure
Regular Bin
Structure

Figure 2.10 Eight tentative moves for score calculation during Iterative

Local Refinement.

The wire length component of the score is the total change in the half-perimeter wire

length (HPWL) of all the nets connected to the module. Since it directly takes the HPWL

into account, it is more accurate than the quadratic objective. The utilization component is

the difference in an exponential function of the source and target bin utilizations. It encourages

a move from a bin with a high utilization to one with lower utilization. For the utilization

component to accurately reflect the placement distribution, a utilization weight is defined

for each bin in the placement region. This weight is a function of the bin utilization and is

constantly updated based on the current placement distribution. As a result, a sparse bin will

have a low utilization weight so that more modules can be moved into it, whereas a dense bin

will have a higher utilization weight so that modules can be moved out of the bin. As the

weights are a function of the bin utilization, they are dynamically updated, and this prevents

www.manaraa.com

35

oscillations in terms of the movement of the modules.

During one iteration of ILR, all the movable modules in the circuit are visited and the

above steps are followed for module movement. Subsequently, this iteration is repeated until

there is no significant improvement in the wire length.

2.6.3 Iterative Local Refinement for Handling Placement Blockages

Circuits today contain numerous placement blockages in the form of fixed macros. As

shown in Figure 2.11(a) and Figure 2.11(b), fixed macros fragment the placement image which

in turn disrupts the smooth spreading of modules during placement. The reason being, there

will be abrupt transitions in the utilization map at the boundaries of the fixed macros. This

in turn inhibits the modules to pass over the macros to find better locations in the placement

region. As a result, analytical placement techniques often place a lot of movable modules on

top of the fixed macros. In addition, it is possible for modules that are connected to each other

to be placed on opposite sides of a fixed macro. Along with increasing the wire length, this can

restrict the ability of a physical synthesis tool to close timing, as techniques like buffer-insertion

can no longer be performed on the straight-line path connecting the modules. This situation

can also lead to severe routing congestion around the edges of the macro.

To avoid the problems associated with fixed macros and enable smooth spreading during

placement, the ILR technique uses a smoothing transform to remove the abrupt transitions

in the utilization map at the boundaries of the fixed macros. Initially, using the current ILR

bin structure, a utilization map is constructed that considers only the fixed macros in the

placement region. This is shown in Figure 2.11(b) in which a value of 1 for a bin implies that

the bin is completely covered by a fixed macro. A 3 × 3 Laplacian matrix is then applied as

a smoothing filter over the entire utilization map for a pre-defined number of iterations. This

transformation smoothes the sharp edges in the original utilization map creating the modified

map as shown in Figure 2.11(c). During the initial steps of ILR, the smoothing transform

is run for a large number of iterations so that modules can easily cross over a fixed macro if

required. During the final steps of ILR, the smoothing iterations are gradually reduced so that

www.manaraa.com

36

(a)

(b)

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0

 0.2

 0.4

 0.6

 0.8

 1

Original Contour
 1

 0.8
 0.6
 0.4
 0.2

(c)

 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50 0
 5

 10
 15

 20
 25

 30
 35

 40
 45

 50

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

After Smoothing
 0.8
 0.6
 0.4
 0.2

Figure 2.11 Handling placement blockages during Iterative Local Refine-

ment. (a) Placement blockage profile for a circuit (b) Initial

contour plot of the placement blockages showing a fragmented

placement image (c) Contour plot after smoothing that aids

in module spreading during Iterative Local Refinement.

www.manaraa.com

37

the edges get progressively steeper. This forces the modules to slide down the slope of the

macro and be effectively pushed out of the macro.

As a result of the smoothing, each bin will now have a contour height associated with it.

The contour height is added to the movement score described in Section 2.6.2 to handle fixed

macros during ILR.

2.6.4 Score for Module Movement During Iterative Local Refinement

Based on the discussion in Sections 2.6.2 and 2.6.3, to calculate the score for moving a

module i from source bin m to target bin n, let:

• α: Weight for the wire length component.

• wli(m): HPWL of all the nets connected to module i when it is in bin m.

• wli(n): HPWL of all the nets connected to module i when it is in bin n.

• β(m): Weight of the utilization component for bin m.

• β(n): Weight of the utilization component for bin n.

• U(m): Utilization function for bin m.

• U(n): Utilization function for bin n.

• γ: Weight for the contour component.

• C(m): Contour height within bin m.

• C(n): Contour height within bin n.

Then the consolidated score for the move from bin m to bin n accounting for wire length, bin

utilization and placement blockage is given by:

si(m,n) = α{wli(m)− wli(n)}+ {β(m)U(m) − β(n)U(n)} + γ{C(m)− C(n)}

www.manaraa.com

38

2.6.5 Iterative Local Refinement for Placement Congestion Control

To reduce congestion, designers often enforce a density target constraint during the place-

ment step. For each bin within a pre-defined bin grid, the density target specifies the maximum

allowed movable area (or density) within the bin. Where, the density of a bin is defined as the

ratio of the total movable area to the total free space within the bin. Satisfying the density

target constraint implies that the density of all the bins in the pre-defined bin grid should be

less than or equal to the density target value.

To handle the density target constraint, a density-bin based ILR (d-ILR) is used along with

the regular ILR iterations. Score computation and module movement during a d-ILR iteration

follows the same procedure as a regular ILR iteration. The key differences between the two

techniques are as follows: (a) to perform placement refinement, d-ILR employs the pre-defined

bin grid used for density target computation, (b) a higher weight is given to the bin utilization

component to enforce spreading.

Within the FastPlace global placement framework, the two ILR techniques are combined

as follows: Each phase of refinement initially runs the d-ILR technique. This is followed by

the regular ILR steps, during which the bin sizes are changed as described in Section 2.6.1.

The interaction between the d-ILR and regular ILR techniques during each refinement phase

is shown in Figure 2.12, which depicts the change in the bin sizes during the various ILR steps.

2.7 Multilevel Global Placement Framework

Recent years have seen a continued increase in the circuit size that needs to be handled

during placement. Today, it is quite common for circuits to have millions of modules that need

to be placed simultaneously, and this number is steadily increasing. Therefore, in addition to

producing high quality solutions, a modern placer should be scalable with circuit size. In such

a scenario, a flat placement methodology may not be effective in producing a good quality

solution within a reasonable amount of time. Hence, for efficient and scalable placement

algorithm design, a hierarchical approach is beneficial. To this effect, many placers follow a

hierarchical or multilevel approach to global placement [7, 8, 10,13,28,32,45, 62, 63, 69].

www.manaraa.com

39

Regular ILR

Bin Structure

Density ILR

Bin Structure

Regular ILR

Bin Structure

Density ILR

Bin Structure

Figure 2.12 Bin size progression during Iterative Local Refinement.

Multilevel global placement algorithms typically use circuit clustering to reduce the place-

ment problem size for large-scale designs. If clustering is performed in a careful manner, it

can also yield better wire length along with faster runtime as compared to flat placement

approaches. The reason being that clustering also has an indirect linearization effect. Clus-

tered modules are often placed in close proximity and this helps reduce the wire length of the

placement. In the spirit of the placement algorithms mentioned above, this work also em-

ploys circuit clustering to develop a multilevel framework for global placement. Two separate

multilevel placement frameworks have been developed over the course of this research. These

are outlined in Figure 2.13 and Figure 2.14, and are employed within the FastPlace [68] and

RQL [66] global placement algorithms respectively.

www.manaraa.com

40

Quadratic Global Placement
• Quadratic optimization
• Density Aware Module Spreading

• Rough placement
• Netlist and physical clustering

Netlist-based clustering

Iterative Local Refinement

Refinement of fine-grain clusters

Refinement of flat netlist

fine-grain
clusters

coarse-grain
clusters

uncluster

uncluster

Quadratic Global Placement
• Quadratic optimization
• Density Aware Module Spreading

• Rough placement
• Netlist and physical clustering

Netlist-based clustering

Iterative Local Refinement

Refinement of fine-grain clusters

Refinement of flat netlist

fine-grain
clusters

coarse-grain
clusters

uncluster

uncluster

Figure 2.13 Multilevel global placement framework employed within Fast-

Place.

www.manaraa.com

41

Quadratic Global Placement

• Quadratic optimization

• Density Aware Module Spreading

• Force-vector modulation

Netlist-based clustering

Iterative Local Refinement

Placement Refinement

Refinement of flat netlist

coarse-grain
clusters

Placement Refinement

uncluster

uncluster

uncluster

Quadratic Global Placement

• Quadratic optimization

• Density Aware Module Spreading

• Force-vector modulation

Netlist-based clustering

Iterative Local Refinement

Placement Refinement

Refinement of flat netlist

coarse-grain
clusters

Placement Refinement

uncluster

uncluster

uncluster

Figure 2.14 Multilevel global placement framework employed within RQL.

www.manaraa.com

42

2.7.1 Clustering for Placement

In the implemented multilevel global placement frameworks, clustering is used in a semi-

persistent context as defined by [45]. As in, clustering is used at the beginning of the placement

flow to pre-process the input netlist so as to reduce the placement problem size. This is followed

by a placement of the coarse-grain clustered netlist. The clusters are then gradually dissolved,

and the placement progressively refined to finally obtain a placement of the original flat netlist.

In this respect, the multilevel frameworks employed within FastPlace and RQL have two key

differences:

1. The method used to construct the coarse-grain clustered netlist – FastPlace uses a two-

level netlist and physical-based clustering approach, whereas RQL uses only netlist-based

clustering.

2. The method used to refine the placement once a solution has been obtained for the coarse-

grained clustered netlist – FastPlace uses a fixed, two-step unclustering and refinement

flow, whereas RQL uses a gradual unclustering and refinement flow.

The rest of this section describes the two-level clustering approach employed within Fast-

Place (Figure 2.13). The netlist-based clustering within RQL is essentially the same as the

first level of clustering within FastPlace, and differs only in the amount of clustering performed

to reduce the placement problem size.

The first and second levels of clustering employed within FastPlace are named fine-grain

clustering and coarse-grain clustering respectively. During fine-grain clustering, the size of each

cluster is such that on average, it contains about two to three modules of the original circuit

netlist. This clustering is solely based on the connectivity information between the modules

in the netlist. Since it is performed at the beginning of placement, it is restricted to building

fine-grain clusters to minimize any loss in placement quality due to incorrect clustering. In

fact, it was demonstrated in [27] that fine-grain clustering can improve placement efficiency

with negligible loss in placement quality.

www.manaraa.com

43

A fast initial placement of the fine-grain clusters is then performed. The purpose of this

step is to get some placement information for the next clustering level. Since each cluster in

the first level has only around two to three modules, the initial placement of the clusters closely

resembles an initial placement of the original flat netlist. Following initial placement, coarse-

grain clusters are created by performing a second level of clustering (coarse-grain clustering).

To perform clustering, coarse-grain clustering uses both, the connectivity information between

the clusters and their physical locations as obtained from the initial placement.

A modified version of the Best-choice clustering algorithm using lazy-update speed-up

technique [45] is employed for the two-level clustering scheme described above. The key feature

of the best-choice clustering algorithm is that it maintains a global view of the circuit netlist

and always picks the pair of modules having the highest score, to be clustered together. In

addition, it is quite efficient to be used as a pre-processing step during placement.

Algorithm 2.3 outlines the modified version of the best-choice clustering algorithm that is

employed within the two-level clustering scheme. Please note, in Algorithm 2.3, the “closest

module” k to any given module j is the one that has the highest clustering score with j. In

addition, a(j) refers to the area of module j.

From Algorithm 2.3 there are four key parameters associated with the clustering scheme:

• α: The clustering ratio, defined as the ratio of the number of modules before and after

clustering.

• s(j, k): The netlist-based clustering score between modules j and k.

• max cluster area: The upper-bound on the cluster area.

• distance threshold : The distance threshold used for physical clustering.

In the two-level clustering scheme, for each level of clustering, α is set to a value of 2

resulting in a 4× reduction in the number of movable modules in the coarse-grain clustered

netlist.

www.manaraa.com

44

Algorithm 2.3 Best-choice clustering with placement information

1: m← number of movable modules in the design

2: α← clustering ratio

3: target number of modules ← m/α

4: Phase 0: Construct Initial Priority-queue (PQ)

5: for (j ← 1 to m) do

6: find closest module k and clustering score s(j, k)

7: insert triple (j, k, s) into PQ with s as the key

8: end for

9: end

10: Phase 1: Generate Clusters

11: while (number of modules > target number of modules) do

12: pick top triple (j, k, s) from PQ

13: if (j is marked invalid) then

14: recalculate closest module k′ and clustering score s′(j, k′)

15: insert triple (j, k′, s′) into PQ

16: else

17: if (netlist-based clustering) then

18: if (a(j) + a(k) < max cluster area) then

19: cluster j and k into new module j′

20: end if

21: else if (netlist and physical clustering) then

22: calculate d(j, k) the distance between j and k

23: if (d(j, k) < distance threshold and a(j) + a(k) < max cluster area) then

24: cluster j and k into new module j′

25: end if

26: end if

27: update circuit netlist based on the clustering

28: for module j′ find closest module k′ and clustering score s′(j′, k′)

29: insert triple (j′, k′, s′) into PQ with s′ as the key

30: mark neighbors of j′ as invalid

31: end if

32: end while

33: end

www.manaraa.com

45

The netlist-based clustering score between two modules j and k is given by:

s(j, k) =
Σν∈Nwν

(aj + ak)β

where N is the set of nets connecting the two modules and wν is the weight of the edge

connecting the two modules on net ν. The parameter β is used to control the relative areas of

the clusters in the clustered netlist. Within FastPlace, wν = 1/k and within RQL, wν = 2/k−1,

where k is the degree of net ν. In addition, β is set to a value of 1 and 2 within FastPlace and

RQL respectively.

Controlling the area of the clusters is highly imperative. Otherwise, a cluster can get pro-

gressively larger by absorbing smaller clusters around it. This is often detrimental and leads to

bad solution quality. Having an area term in the denominator of the clustering score biases the

clustering technique to pick modules that will not result in forming huge clusters. In addition,

an upper-bound on the cluster area is also imposed using the max cluster area parameter.

Within the two-level clustering scheme, max cluster area is set to 5× average cluster area.

Where, average cluster area = Σm
i=1a(i)/target number of modules This results in the forma-

tion of balanced clusters.

It is quite possible that two modules having a very high connectivity score do not actually

end up being close to each other in the final placement. This can happen due to the influence

of the other nets or modules connected to them. Hence, during coarse-grain clustering, even

though the modules are ranked and picked based on their connectivity score, they are clustered

only if the distance between them, as obtained from the initial global placement is within a

certain threshold. In the clustering scheme employed, the distance threshold is empirically set

to 10% of the maximum chip dimension.

2.8 The FastPlace and RQL Global Placement Algorithms

This section outlines the two global placement algorithms that have been developed over

the course of this research. Algorithm 2.4, first outlines the FastPlace algorithm. This is

followed by Algorithm 2.5, which outlines the RQL algorithm. The key differences between

the two algorithms are as follows:

www.manaraa.com

46

• RQL uses the force-vector modulation technique to minimize the linear wire length

whereas FastPlace does not have this feature.

• To add the spreading forces during quadratic placement, RQL uses on-chip fixed-points

whereas FastPlace uses boundary fixed-points.

• RQL uses only netlist-based clustering, whereas FastPlace follows a two-level netlist and

physical-based clustering approach.

• RQL uses a gradual unclustering and refinement flow, whereas FastPlace uses a fixed,

two-step unclustering and refinement flow.

• To handle the density target constraint FastPlace uses the density-bin based ILR tech-

nique, whereas RQL handles the constraint by running more iterations of the regular

ILR technique.

• The macro-blocks are legalized at a much earlier stage in RQL (at the end of coarsened

netlist placement), whereas in FastPlace they are legalized at the end of global placement.

It was observed that legalizing the macro-blocks early on in the placement flow lead to

better spreading of the standard-cells and also aided the standard-cell legalization step

within RQL.

www.manaraa.com

47

Algorithm 2.4 The FastPlace algorithm

1: Phase 0: Initial Placement

2: construct fine-grain clusters using Best-choice netlist-based clustering

3: solve initial quadratic program

4: repeat

5: perform regular Iterative Local Refinement on fine-grain clusters

6: until (the placement is roughly even)

7: end

8: Phase 1: Coarse Global Placement

9: construct coarse-grain clusters using Best-choice netlist and physical clustering

10: re-initialize the cluster coordinates to the center of the placement region

11: solve the quadratic program

12: repeat

13: perform Density Aware Module Spreading on coarse-grain clusters

14: add spreading forces to the quadratic program formulation

15: solve the quadratic program

16: until (the placement is roughly even)

17: repeat

18: perform density-based Iterative Local Refinement on coarse-grain clusters

19: perform regular Iterative Local Refinement on coarse-grain clusters

20: perform Density Aware Module Spreading on coarse-grain clusters

21: until (the placement is quite even)

22: end

23: Phase 2: Refinement of fine-grain clusters

24: uncluster coarse-grain clusters

25: perform density-based Iterative Local Refinement on fine-grain clusters

26: perform regular Iterative Local Refinement on fine-grain clusters

27: end

28: Phase 3: Refinement of flat netlist

29: uncluster fine-grain clusters

30: perform density-based Iterative Local Refinement on flat netlist

31: perform regular Iterative Local Refinement on flat netlist

32: end

www.manaraa.com

48

Algorithm 2.5 The RQL algorithm

1: Phase 0: Clustering

2: initial number of modules ← module count in flat netlist

3: while (number of modules > target number of modules) do

4: cluster netlist using the Best-choice clustering algorithm

5: end while

6: end

7: Phase 1: Coarsened Netlist Placement

8: solve initial quadratic program

9: while (max bin util > target util threshold) do

10: perform Density Aware Module Spreading

11: calculate spreading forces for all the modules

12: rank modules based on the spreading force magnitude

13: modulate the spreading force for the top x% of modules

14: add spreading forces to quadratic program formulation

15: solve the quadratic program

16: end while

17: repeat

18: perform regular Iterative Local Refinement

19: perform Density Aware Module Spreading

20: until (max bin util ≤ 1.0)

21: uncluster movable macro-blocks

22: legalize and fix movable macro-blocks

23: end

24: Phase 2: Refinement

25: while (number of modules < initial number of modules) do

26: uncluster netlist s.t. number of modules = 2×number of modules

27: perform regular Iterative Local Refinement

28: end while

29: end

www.manaraa.com

49

CHAPTER 3. LEGALIZATION

3.1 Introduction

To manage the complexity of placement, the non-overlapping constraints among the mod-

ules are typically ignored during the global placement stage. Once the modules have been

reasonably distributed over the placement region, the aim of the legalization stage is to resolve

the overlaps among the modules and assign then to legal locations in the placement region.

Due to the widespread use of pre-designed macro-blocks like IP cores etc., modern circuits

often contain a large number of placeable macro-blocks along with the standard-cells (mixed-

size circuits). In such a scenario, traditional standard-cell based legalization techniques like

Diffusion [53] and network-flow [5] can no longer be used. Since the movement of the macro-

blocks can significantly impact the placement wire length, particular attention should be paid

during the legalization of macro-blocks within mixed-sized circuits.

Based on their approach, existing mixed-size legalization techniques can be broadly classi-

fied into two categories:

1. Single-phase Legalization: Single-phase legalization techniques do not differentiate be-

tween the standard-cells and macro-blocks in the circuit, and simultaneously legalize all

the modules in the circuit. Examples of single-phase legalization are the techniques em-

ployed within [34] and [2] that extend the legalization algorithm in [25] to perform mixed-

size legalization. Yet another single-phase legalization technique is described in [76],

which uses the technique of zone refinement to perform mixed-size legalization and de-

tailed placement.

2. Two-phase Legalization: These techniques distinguish between the macro-blocks and

www.manaraa.com

50

standard-cells, and perform mixed-size legalization as follows: (a) in the first phase, the

overlaps among the macro-blocks are resolved and they are assigned to legal locations

within the placement region, (b) in the second phase, the legalized macro-blocks are

treated as fixed macros (placement blockages) and the standard-cells are legalized in the

presence of the fixed macros. Representative examples of two-phase legalization are the

techniques employed within [18, 19, 71]. To legalize the macro-blocks in the circuit, [71]

uses a three-step approach: (a) it first determines all pairs of macros that overlap with

each other, (b) for each pair of overlapping macros, it uses a branch and bound algorithm

to find the non-overlapping constraint that causes the least perturbation of the macros

from their global placement locations, (c) finally, it uses linear programming (LP) to

determine the locations of the macro-blocks satisfying the non-overlapping constraints

determined in the previous step. On the other hand, [18, 19] use constraint graphs to

represent the overlaps among the macro-blocks. A constraint graph pre-processing step

is performed to ensure that all the macros can be placed with the placement region

once they are legalized. This is followed by an LP to determine the locations of the

macro-blocks.

3.2 Overview of the Mixed-size Legalization Algorithm

To perform mixed-size legalization, this work uses the two-phase legalization technique as

outlined in Section 3.1. The top-level flow for mixed-size legalization is given in Algorithm 3.1.

Algorithm 3.1 Mixed-size legalization algorithm

1: Phase 1: Macro-block Legalization

2: legalize movable macro-blocks using the Iterative Clustering algorithm

3: fix the movable macro-blocks and transform them into placement blockages

4: end

5: Phase 2: Standard-cell Legalization

6: construct row slices for all the circuit rows in the placement region

7: perform slice aware bin-based cell movement

8: move cells among slices to satisfy slice capacities

9: legalize cells within slices

10: end

www.manaraa.com

51

The rest of this chapter is organized as follows: Section 3.3 describes the macro-block

legalization algorithm in detail. This is followed by Section 3.4 that describes the standard-cell

legalization algorithm.

3.3 Legalization of Macro-blocks

Compared to standard-cells, the macro-blocks are much larger in size, with sizes occa-

sionally comparable to the chip dimensions. Hence, the movement of the macro-blocks has a

significant impact on the placement wire length. Therefore, the aim of the macro-block legal-

ization phase is to maintain the global placement locations of the macros as much as possible.

If we denote the global placement location of a macro as its target location. Then the macro-

block legalization problem is to resolve overlap among all the macros and assign them to legal

locations in the placement region, while minimizing the total perturbation of the macros from

their target locations.

This problem is formulated as a minimum perturbation fixed-outline floorplanning problem.

The sequence-pair [42] is used to represent the floorplan and enforce the non-overlapping

constraints among the macros. Please note, the developed approach is not restricted to a

floorplan representation by a sequence-pair. It is a general technique that can incorporate

other floorplanning representations as well. Formally, the minimum perturbation floorplanning

problem is described in Figure 3.1.

Minimum Perturbation Floorplan Realization (MPFR) Problem:

Given: N macro-blocks with target coordinates (x∗
i , y

∗
i) for i = 1, . . . ,N and a

sequence-pair (p,q).

Determine: Legalized coordinates (xi, yi) s.t.
∑N

i=1 |xi−x∗
i |+ |yi−y∗i | is minimized.

Figure 3.1 Minimum perturbation floorplan realization problem.

For a given sequence-pair, the MPFR problem is solved by using a novel Iterative Clustering

algorithm. This is described in Section 3.3.1. This is followed by a description of the top-level

www.manaraa.com

52

flow for macro-block legalization using simulated annealing, which is given in Section 3.3.2.

Since the horizontal and vertical non-overlapping constraints can be handled independently,

only the horizontal problem is considered for further discussion.

3.3.1 Iterative Clustering Algorithm

As suggested by the name, the basic idea behind the Iterative Clustering algorithm is to

progressively cluster the macros that overlap with each other, when the macros are assigned

or moved to their target locations during legalization. Initially, every macro in the circuit is

assigned to a separate cluster. Subsequently, to determine which macros need to be grouped in

the same cluster, all the clusters are shifted to their optimal locations that satisfy the minimum

perturbation objective function. In doing so, if there is any overlap among the clusters, then

these clusters are merged to form a larger cluster. Within each cluster, the macros are abutted

to each other preserving their left-to-right relationship as defined by the current sequence-

pair. As a result, there is no overlap among the macros within the clusters. By progressively

clustering the macros and moving the clusters to their optimal locations, a legalized placement

solution of the macros is obtained. The pseudo-code for the Iterative Clustering algorithm to

legalize the macro-blocks in the horizontal direction is given in Algorithm 3.2.

Algorithm 3.2 The Iterative Clustering algorithm

1: from the current sequence-pair (p,q) determine the horizontal constraint graph

2: find the immediate left and right neighbors of all the macro-blocks from the horizontal

constraint graph

3: for (i← 1 to N) do

4: place macro pi in its target location

5: Let C be a new cluster consisting of pi

6: while (C overlaps with other clusters) do

7: merge C with the closest cluster on its left

8: let C be the new cluster that is formed

9: shift C to its optimal location

10: if (macro pj ∈ C is at its target location) then

11: detach pj from C if possible and goto step 9

12: end if

13: end while

14: end for

www.manaraa.com

53

The individual steps of the Iterative Clustering algorithm are now explained in more detail

with the help of an example given in Figure 3.2 and Figure 3.3. Figure 3.2(a) shows an example

circuit with six macro-blocks in which macros 3, 5 and 6 overlap in the horizontal direction.

Traversing the list of the macros from left to right, the overlaps among the macros are as

follows: (a) macro 5 overlaps with macro 6 by d1 units (b) macro 3 overlaps with macro 6 by

d1/2 units, and (c) macro 3 overlaps with macro 5 by d2 − d1/2 units. From Figure 3.2(a),

it can be seen that the minimum horizontal displacement required to yield an overlap-free

placement is: d1 + (d2 − d1/2) = d1/2 + d2 units.

As mentioned before, the macro-block legalization algorithm uses the sequence-pair to

represent the current floorplan. The sequence-pair is essentially a pair of N -dimensional

vectors (p,q) that represent the horizontal and vertical relationships between the macro-

blocks. For the circuit given in Figure 3.2(a), the corresponding sequence-pair is given by

(p,q) = (412653, 615342) [42]. From Algorithm 3.2, for horizontal placement, initially the

horizontal constraint graph is constructed from the current sequence-pair. This is shown in

Figure 3.2(b). The horizontal constraint graph gives the immediate left and right neighbors

of all the macro-blocks in the circuit. These neighbors are associated with the non-transitive

edges in the horizontal constraint graph and can be found in O(N2) time.

The macros are then placed one at a time from left to right according to the horizontal

sequence p. In case, there is no overlap between a macro and an existing cluster, the macro

is placed at its target location. This is shown in Figure 3.2(c) in which the macros have been

placed in the order 4→ 1→ 2→ 6 given by the horizontal sequence. In case a macro overlaps

with an existing cluster, then the clustering is updated according to steps 6–13 (Figure 3.2(d)–

Figure 3.3(g)). The condition in step 6 and the closest cluster in step 7 can be determined by

considering the constraints of the immediate left neighbors of the macros in C.

The distance to shift a cluster in step 9 is determined according to the following lemma:

Lemma 1 For a cluster C, its location is optimal if the number of macros perturbed to the

left from their target locations is equal to the number perturbed to the right.

Since the macros are added from left to right in the horizontal sequence p, if there is

www.manaraa.com

54

an overlap between a macro and an existing cluster, the macro will always be abutted to

the right of the cluster (Figure 3.2(d) and Figure 3.3(f)). Hence, newly added macros will

always be placed to the right of their target locations. As a result, the clusters will always

shift left to move the macros closer to their target locations (Figure 3.3(e) and Figure 3.3(g)).

This makes it relatively simple to find the correct shift amount for the newly formed clusters.

Let the displacement of a macro to the right of its target location be defined as a positive

displacement and to left of its target location as negative. Then the shift amount for a cluster

can be determined by looking at all its constituent macros that have a positive displacement

value. In accordance with Lemma 1, if a cluster has an even number of macros, then it is

shifted to the left by half the minimum positive displacement value among its constituent

macros (Figure 3.2(d)). If the cluster has an odd number of macros, then it is shifted to the

left by the minimum positive displacement value among its constituent macros (Figure 3.3(g)).

In step 10, after shifting a cluster C, a macro pj ∈ C may potentially reach its target

location. If pj does not have any right neighbors that belong to cluster C, then it is detached

from the cluster. Otherwise, it will move along with the cluster during the subsequent iterations

and will not be placed in its optimal location. The condition to detach pj can be checked by

looking at its immediate right neighbors.

Although the while loop in steps 6–13 looks complicated, it can be shown with careful

implementation and analysis that the runtime complexity of the Iterative Clustering algorithm

is O(N2).

3.3.2 Macro-block Legalization by Simulated Annealing

The aim of the top-level simulated annealing framework is to obtain a sequence-pair such

that the corresponding placement obtained from the Iterative Clustering algorithm will resolve

overlaps among the macros with minimum perturbation from their global placement locations.

Another factor to be considered during placement is that the macros have to be placed in legal

locations within the placement region. Hence, the cost function for simulated annealing is a

weighted sum of the total perturbation of the macros, along with a penalty for being out of

www.manaraa.com

55

6

4

3

1

2

5

d1/2 + d1/2 = d1

d2

6

4

3

1

2

5

d1/2 + d1/2 = d1

d2

sequence-pair (p, q) = (4 1 2 6 5 3, 6 1 5 3 4 2)

Horizontal Constraint Graph

snk

4

6

1

5

2

3

src

Vertical Constraint Graph

6 35

1

4

src

snk

2

sequence-pair (p, q) = (4 1 2 6 5 3, 6 1 5 3 4 2)

Horizontal Constraint Graph

snk

4

6

1

5

2

3

src

Horizontal Constraint Graph

snk

4

6

1

5

2

3

src snk

4

6

1

5

2

3

src

Vertical Constraint Graph

6 35

1

4

src

snk

2

Vertical Constraint Graph

6 35

1

4

src

snk

2

6 35

1

4

src

snk

2

(a) (b)

6

4

1

2

6

4

1

2

6

4

1

2

5

= cluster “C”

d1

6

4

1

2

5

= cluster “C”= cluster “C”

d1d1

(c) (d)

Figure 3.2 Iterative Clustering algorithm for macro-block legalization on

an example circuit with six macro-blocks. (a) Initial placement

of macros with horizontal overlap (b) Sequence-pair from initial

placement (c) Go through horizontal sequence and add macros

from left to right (d) Shift macro 5 from target location because

of overlap and form cluster C.

www.manaraa.com

56

4

1

2

6

5

= cluster “C”

d1/2

4

1

2

6

5

6

5

= cluster “C”= cluster “C”

d1/2d1/2

4

1

2

6

5

= cluster “C”

d2

3

4

1

2

6

5

6

5

= cluster “C”= cluster “C”

d2d2

3

(e) (f)

4

1

2

= cluster “C”

d1/2

6

5 3

4

1

2

= cluster “C”= cluster “C”

d1/2d1/2

6

5 3

6

5

6

5 3

4

1

2

6

5 3

d1

d2 - d1/2

Total Displacement
d1/2 + d2

4

1

2

6

5 3

d1

d2 - d1/2

Total Displacement
d1/2 + d2

(g) (h)

Figure 3.3 Iterative Clustering algorithm for macro-block legalization on

an example circuit with six macro-blocks (continued). (e) Shift

cluster C to the left towards its optimal location (f) Shift macro

3 from target location because of overlap and form cluster C (g)

Shift cluster C to the left towards its optimal location (h) Final

locations of macros with no overlap.

www.manaraa.com

57

bounds of the placement region.

If (p,q) represents the sequence-pair. Then, the initial sequence for p and q are generated

by sorting the macros in a non-decreasing order according to the Manhattan distance from the

upper-left and lower-left corner to their target locations respectively. This sequence-pair closely

corresponds to the original placement and is usually quite good. Hence, a low-temperature

annealing is sufficient to generate a good result. Additionally, each annealing move is restricted

to an exchange of two adjacent macros in one of the two sequences so as to not disturb the

current solution significantly. Algorithm 3.3, now gives the pseudo-code for the top-level flow

for macro-block legalization using simulated annealing.

Algorithm 3.3 Macro-block legalization using simulated annealing

1: get initial sequence-pair (SP) from the global placement of the macro-blocks

2: set initial temperature T and iteration I

3: while (T > T terminate and I < I terminate) do

4: step← 0

5: evaluate SP and modify if necessary

6: while (step < Number of steps per temperature) do

7: placement← Iterative Clustering Algorithm(SP)

8: evaluate(placement)

9: modify(SP)

10: step← step + 1

11: end while

12: T ← T× cooling rate

13: I ← I + 1

14: end while

3.3.3 Effect of Macro-block Legalization

Finally, Figure 3.4 illustrates the solution quality of the macro-block legalization algorithm.

The circuit shown in Figure 3.4 happens to be a difficult instance for macro-block legalization.

The reason being, the entire circuit consists of only macro-blocks and it has less than 20% of

white-space. This greatly limits the flexibility of a macro-block legalization algorithm. Figure

3.4(a) shows the global placement solution of FastPlace. It can be seen that there is significant

module overlap in and around the center of the placement region. Figure 3.4(b) shows the

www.manaraa.com

58

placement after macro-block legalization. It can be seen that the macros have moved by a very

small amount during legalization.

(a)

(b)

Figure 3.4 Effect of macro-block legalization during placement. (a) Lo-

cations of macro-blocks before legalization (b) Locations of

macro-blocks after legalization.

www.manaraa.com

59

3.4 Legalization of Standard-cells

The aim of the standard-cell legalization phase is to resolve overlaps among the cells in the

presence of the fixed modules or placement blockages in the circuit. Fixed modules overlapping

with the circuit rows in the placement region essentially fragment the rows into a number of

sub-rows. Therefore, the problem of the standard-cell legalization phase is to place the cells in

legal locations within these sub-rows. If we consider a single row in the placement region, then

a “row slice” happens to be one of the sub-rows within which the cells need to be placed. In

other words, a row slice is the maximal part of a circuit row that is not covered by a placement

blockage. The construction of a row slice is shown in Figure 3.5. In the figure, the horizontal

dashed lines represent the standard-cell circuit rows, and the solid boxes represent the fixed

modules overlapping with the circuit rows. The regions with the diagonal lines represent two

of the row slices in the circuit.

Row Slice

Fixed Module

Row Slice

Fixed Module

Figure 3.5 A row slice for standard-cell legalization.

3.4.1 Slice Aware Bin-based Cell Movement

The aim of the slice aware bin-based cell movement step is to satisfy slice capacities as well

as placement congestion constraints. It achieves this dual objective by using a bin-based cell

www.manaraa.com

60

movement scheme that is aware of the row slice capacity requirements.

To perform bin-based cell movement, a regular bin structure (B) is initially imposed on

the placement region. The height of each bin in the regular bin structure is equal to the circuit

row height and its width is equal to around 4× the average cell width. Based on the current

placement, the utilization of each bin in B and each slice in the placement region is then

computed. The utilization of a bin is defined as the ratio of the total area of all the modules

overlapping with a bin to the bin area. The utilization of a slice is defined as the total width

of all the standard-cells within the slice. If the slice utilization is greater than the slice width,

it is considered to be above capacity.

Based on the slice utilizations and placement blockages, a move map (M) is constructed

that has the same dimensions as the regular bin structure. A bin in M has a value of either 1

for allowing movement of the cells into or out of this bin, or 0 otherwise. Bins that completely

overlap blockages are assigned a value of 0 as we do not want cells to be moved on top of the

blockages. If the utilization of a particular slice is greater than its width, then a small region of

bins in and around the current slice is assigned a value of 1. This is to allow cell movement to

be performed only on these bins. This is depicted in Figure 3.6 where there are two slices that

are above capacity (shown by the diagonal lines). Then, bin-based cell movement is turned on

for a small set of bins in and around the slices (shown by the lightly shaded bins in the figure).

A modified version of the ILR technique is then used to move the cells among the bins.

The difference being that the score for a move during legalization is a weighted sum of three

components: (a) the half-perimeter wire length reduction for the move, (b) a function of the

utilization of the source and target bins, (c) a weighted difference of the move map values

for the source and target bins. Since the legalization technique is mainly used to even out

the placement and satisfy slice capacities, a higher weight is assigned to the second and third

components.

The key advantages of the slice aware bin-based cell movement technique are that it does

not significantly perturb the global placement solution. Secondly, it distributes the cells evenly

within the slices. This helps to satisfy placement congestion constraints.

www.manaraa.com

61

Figure 3.6 Slice aware bin-based cell movement.

3.4.2 Slice-based Cell Legalization

Following the slice aware bin-based cell movement, an explicit slice-based cell legalization

step is performed. To legalize the cells within the slices, the cells are first moved among the

slices to satisfy the slice capacities. Once all the slices in the placement region are under

capacity, the cells are assigned to legal locations within the slices.

To satisfy the capacity requirements of all the slices, an iterative approach is followed, where

the number of over-occupied slices is gradually reduced during each iteration. To perform cell

movement among the slices, for every cell present in an over-occupied slice, eight scores are

computed that correspond to tentatively moving the cell to its nearest eight neighboring slices.

This is shown in Figure 3.7. The cell is then assigned a movement score that is equal to the

highest value among the eight scores computed in the previous step.

For calculating the score, it is assumed that the cell is moving from its current location in

a source slice to the nearest possible location in the target slice. Each score is a weighted sum

of two components: (a) the change in the half-perimeter wire length associated with the move,

www.manaraa.com

62

Figure 3.7 Cell movement during slice-based cell legalization.

(b) a function of the utilization of the source and target slices. Since the legalization technique

is mainly used to even out the placement and satisfy the capacity requirements associated with

the slices, a higher weight is assigned to the second component. In addition, each score is aug-

mented with a displacement weight that is inversely proportional to the intended displacement

of the cell from its original location (location prior to legalization). The displacement weight

is required to prevent the cell from moving by a large distance during legalization.

Once the movement score has been determined for all the cells in a slice, the cells are moved

out of the slice in the decreasing order of their movement scores. During one legalization

iteration, we traverse through all the slices that are above capacity and follow the above steps

for cell movement. Subsequently, this iteration is repeated until all the slices satisfy their

capacity requirements.

Please note that any given objective can be used during cell movement to satisfy the slice

capacity requirements. In addition, the search space for the target slice need not be restricted

to the nearest eight neighboring slices. For a given source slice, any number of target slices

can be considered to move a cell to satisfy the legalization objective.

www.manaraa.com

63

3.4.3 Advantages of Slice-based Legalization over Bin-based Legalization

Traditional standard-cell legalization techniques like diffusion [52,53] and network flow [38]

typically follow a bin-based cell movement approach. During legalization, these techniques

divide the placement region into equal sized bins and determine the utilization of each bin.

They then move the cells among the bins to satisfy the capacity requirement associated with

each bin. Bin-based schemes have two major drawbacks:

• They cannot effectively handle fractured spaces which are very common in current inte-

grated circuits. As an example, during legalization, it might be required to move a cell

across a fixed module for it to be legalized. Bin-based techniques typically do not allow

cell movement on top of fixed modules. As a result, they might not be able to find a

legal placement solution.

• Satisfying bin capacity does not guarantee a legalized placement. This is shown in Figure

3.8(a) and Figure 3.8(b). These figures show a placement region with two large fixed

modules, four small fixed modules (both depicted by the dark shaded boxes) and eight

standard-cells (depicted by the light shaded boxes). One of the bins in the regular bin

structure employed by the legalization technique is shown by the thick solid lines. In

Figure 3.8(a) the total area of the cells in the bin is equal to the capacity of the bin.

But, once the cells are aligned and legalized within the circuit rows, it can be seen from

Figure 3.8(b), that cells 3 and 5 overlap with the adjacent fixed modules.

One method to overcome these drawbacks is to increase the number of bins in the regular

bin structure. But this would significantly increase the runtime of the legalization algorithm.

Secondly, such a technique might not be able to legalize the modules with minimum perturba-

tion from their original locations. Hence, bin-based algorithms are not very effective in highly

fragmented spaces.

In contrast, the key advantages of a slice-based legalization technique are:

• Since the slice boundaries are aligned to the boundaries of the fixed modules, cells in a

slice-based legalization technique have the ability to jump over fixed modules if required.

www.manaraa.com

64

(a)

6 8

3

1 2

7

5
4

Fixed Modules

Movable Modules

6 8

3

1 2

7

5
4

Fixed Modules

Movable Modules

(b)

6 8

1 2

7

43 5

6 8

1 2

7

43 5

Figure 3.8 Disadvantage of a bin-based legalization technique – satisfying

bin capacity does not guarantee a legal placement. (a) Total

area of all the cells within the bin is equal to the capacity of

the bin. Bin-based techniques stop when this criteria is met (b)

Subsequent alignment and final legalization of the cells, leading

to an overlapping placement.

www.manaraa.com

65

• Slice-based legalization techniques can effectively incorporate bin-based cell movement

techniques to satisfy slice capacities as well as bin density target requirements. This is

shown by the slice aware bin-based cell movement technique.

• If the placement region is divided into slices, then satisfying slice capacities guarantees

a legal placement solution (Figure 3.9).

6 87

43

1 2 5

6 87

43

1 2 5

Figure 3.9 Advantage of a slice-based legalization technique – satisfying

slice capacity guarantees a legal placement.

www.manaraa.com

66

CHAPTER 4. EXPERIMENTAL RESULTS

This chapter describes the placement results of FastPlace and RQL on the ISPD-2005 [44]

and ISPD-2006 [43] placement contest benchmarks. It compares the two algorithms with other

state-of-the-art academic placement algorithms in terms of the half-perimeter wire length and

the runtime for placement. Since RQL is the more recent of the two placement algorithms,

it is used as the basis for all the comparisons. The placement runtimes are reported on a 2.6

GHZ AMD Opteron 252 machine with 8 GB RAM.

4.1 Benchmark Circuits

The ISPD-2005 and ISPD-2006 benchmarks have been derived from industrial ASIC designs

and have circuit sizes ranging from 210k to 2.48M movable modules. In addition, the ISPD-2006

benchmarks are placement congestion constrained, with a specific density target assigned to

each circuit. Therefore, in addition to obtaining a good wire length, the placement algorithms

need to satisfy the density target associated with each circuit of the benchmark suite. Statistics

for the two benchmark suites are shown in Table 4.1.

4.2 Placement Results on the ISPD-2005 Benchmarks

Table 4.2 compares the half-perimeter wire length (HPWL) of RQL and FastPlace with

other state-of-the-art academic placers. For this experiment all the placers were run in their

default mode. From Table 4.2, in default mode, RQL obtains the best HPWL on all eight

circuits of the ISPD-2005 benchmark suite. In particular, RQL obtains an average wire

length improvement of 3.7%, 2.8%, 8.5%, 14.6%, 3.2% and 5.4% versus FastPlace, mPL6,

APlace2.0, Capo10.2, NTUPlace3 and Kraftwerk respectively.

www.manaraa.com

67

Table 4.1 Statistics for the ISPD-2005 and ISPD-2006 placement bench-

marks.

Total Movable Fixed Design Density
Circuit

Modules Modules Modules
Nets

Utilization (%) Target (%)

ISPD-2005 Benchmarks

adaptec1 211447 210904 543 221142 57.34 –

adaptec2 255023 254457 566 266009 44.32 –

adaptec3 451650 450927 723 466758 33.66 –

adaptec4 496045 494716 1329 515951 27.23 –

bigblue1 278164 277604 560 284479 44.67 –

bigblue2 557866 534782 23084 577235 37.94 –

bigblue3 1096812 1095519 1293 1123170 56.68 –

bigblue4 2177353 2169183 8170 2229886 44.35 –

ISPD-2006 Benchmarks

adaptec5 843128 842482 646 867798 49.98 50

newblue1 330474 330137 337 338901 70.69 80

newblue2 441516 330239 1277 465219 61.66 90

newblue3 494011 482833 11178 552199 26.31 80

newblue4 646139 642717 3422 637051 46.45 50

newblue5 1233058 1228177 4881 1284251 49.56 50

newblue6 1255039 1248150 6889 1288443 38.78 80

newblue7 2507954 2481372 26582 2636820 49.31 80

Table 4.2 HPWL (×e6) comparison of FastPlace and RQL with exist-

ing academic placers – mPL6 (MP), APlace2.0 (AP), Capo10.2

(CP), NTUplace3 (NP) and Kraftwerk (KW), on the ISPD-2005

placement benchmarks. [*avg of 6 circuits]

Placer (Default Mode Runs)
Circuit

RQL FastPlace MP [9] AP [32] CP [57] NP [12] KW [61]

adaptec1 77.54 77.82 77.91 78.35 91.28 80.93 NA

adaptec2 88.51 93.33 91.96 95.70 100.75 89.95 93.84

adaptec3 210.96 212.89 214.05 218.52 228.47 214.20 NA

adaptec4 188.86 197.05 194.23 209.28 208.35 193.74 199.75

bigblue1 94.98 95.62 96.79 100.02 108.60 97.28 99.61

bigblue2 150.03 153.42 152.33 153.75 162.92 152.20 155.19

bigblue3 323.09 362.73 344.37 411.59 398.49 348.48 339.20

bigblue4 797.66 831.29 829.35 871.29 965.30 829.16 857.09

Average 1.000 1.037 1.028 1.085 1.146 1.032 1.054*

www.manaraa.com

68

Table 4.3 compares the wire length results of RQL in default mode with the wire length

obtained by the top three placers during the ISPD 2005 placement contest. It should be noted

that during the contest, all the placers were given the circuits in advance. There was no limit

on the CPU time and the placers were allowed to have separate parameters for each individual

circuit to obtain the best possible wire length. RQL in default mode obtains an average

HPWL improvement of 1.5% as compared to APlace, which generated the best

HPWL results during the ISPD 2005 placement contest. Till date, the APlace contest

wire length (reproduced in column three of Table 4.3) was the best reported results in the

literature on these circuits.

Table 4.3 HPWL (×e6) comparison of RQL with the top performing aca-

demic placers during the ISPD-2005 placement contest.

Default Mode Placer is tuned for each individual circuit
Circuit

RQL APlace [32] mFAR [28] Dragon [63] mPL [8]

adaptec2 88.51 87.31 91.53 94.72 97.11

adaptec4 188.86 187.65 190.84 200.88 200.94

bigblue1 94.98 94.64 97.70 102.39 98.31

bigblue2 150.03 143.82 168.70 159.71 173.22

bigblue3 323.09 357.89 379.95 380.45 369.66

bigblue4 797.66 833.21 876.28 903.96 904.19

Average 1.000 1.015 1.079 1.098 1.105

Table 4.4 compares the runtime of RQL and FastPlace with mPL6, APlace 2.0 and Capo10.2.

On average, RQL is 3.09 times, 10.22 times and 6.99 times faster than mPL6, APlace2.0 and

Capo10.2 respectively, but it is about 2.0 times slower than FastPlace.

4.3 Placement Results on the ISPD-2006 Benchmarks

Table 4.5 compares the HPWL of RQL and FastPlace with existing academic placers.

The results for NTUPlace3 [12] are reported from the associated publication. The results

for all other placers are from the ISPD 2006 placement contest. From Table 4.5, on average

RQL is 12%, 5% and 4% better in HPWL as compared to Kraftwerk, mPL6 and NTUPlace2

respectively. These algorithms were the top three placers during the ISPD 2006 placement

www.manaraa.com

69

Table 4.4 Runtime comparison of RQL and FastPlace with existing aca-

demic placers – mPL6, APlace2.0 and Capo10.2, on the IS-

PD-2005 placement benchmarks.

Placer

Circuit RQL

(sec)

FastP lace

RQL

mPL6

RQL

APlace2.0

RQL

Capo10.2

RQL

adaptec1 626 0.42 3.22 9.42 6.57

adaptec2 1039 0.40 2.17 8.83 5.44

adaptec3 2004 0.62 3.58 11.11 6.31

adaptec4 1747 0.47 3.87 14.39 6.59

bigblue1 967 0.46 2.83 8.81 6.93

bigblue2 1884 0.58 4.14 10.64 7.06

bigblue3 4053 0.74 2.59 9.31 9.38

bigblue4 10342 0.46 2.33 9.30 7.62

Average 0.52× 3.09× 10.22× 6.99×

contest. The most current results of NTUPlace3, shows an average improvement of 1% in

HPWL over RQL.

Finally, Table 4.6 compares the scaled HPWL of RQL and FastPlace with the other aca-

demic placers. The scaled HPWL (S HPWL) is a weighted function of the wire length and

placement congestion and is defined as [43]:

S HPWL = HPWL× (1 + density overflow penalty)

where the density overflow penalty penalizes the placers that do not meet the density target

requirements. From Table 4.6, on average RQL is 7%, 1% and 2% better in terms of S HPWL

as compared to Kraftwerk, mPL6 and NTUPlace2 respectively. The average S HPWL of

NTUPlace3 is comparable to that of RQL, but looking at individual results, RQL obtains

better S HPWL on five out of the eight circuits as compared to NTUPlace3.

www.manaraa.com

70

Table 4.5 HPWL (×e6) comparison of RQL and FastPlace with existing

academic placers on the ISPD-2006 placement benchmarks.

adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7 Average

RQL 405.73 64.21 196.74 269.13 268.07 473.14 494.30 1031.33 1.00

FastPlace 432.96 78.56 201.51 292.58 284.54 530.12 539.44 1124.55 1.10

Aplace3 449.61 73.26 197.42 273.63 377.55 545.90 522.58 1098.26 1.12

mFAR 448.43 77.36 211.65 303.58 307.73 567.65 527.36 1135.80 1.13

Dragon 500.24 80.76 259.95 524.41 340.70 613.34 572.19 1408.97 1.36

mPL6 425.12 66.90 197.53 283.80 294.43 530.67 510.40 1070.33 1.05

Capo 491.60 98.35 308.64 361.21 358.28 657.40 668.33 1518.49 1.40

NTUPlace2 404.98 62.40 201.95 291.14 284.99 494.57 504.39 1116.86 1.04

Kraftwerk 444.07 78.29 205.87 279.94 311.09 555.48 537.32 1139.17 1.12

DPlace 463.95 102.37 324.07 379.19 305.78 600.11 674.39 1398.85 1.37

NTUPlace3 378.56 60.74 198.76 278.87 274.48 474.84 484.81 1056.78 0.99

www.manaraa.com

71

Table 4.6 Comparison of the Scaled HPWL (S HPWL) (×e6) which in-

cludes the HPWL and density target based overflow penalty, on

the ISPD-2006 placement benchmarks.

adaptec5 newblue1 newblue2 newblue3 newblue4 newblue5 newblue6 newblue7 Average

RQL 443.28 64.43 199.60 269.33 308.75 537.49 515.69 1057.79 1.00

FastPlace 517.56 78.75 202.98 294.77 325.06 633.21 546.72 1139.24 1.11

APlace3 520.97 73.31 198.24 273.64 384.12 613.86 522.73 1098.88 1.10

mFAR 476.28 77.54 212.90 303.91 324.40 601.27 535.96 1153.76 1.10

Dragon 500.74 80.77 260.83 524.58 341.16 614.23 572.53 1410.54 1.29

mPL6 431.14 67.02 200.93 287.05 299.66 540.67 518.70 1082.92 1.01

Capo 494.64 98.48 309.53 361.25 362.40 659.57 668.66 1518.75 1.33

NTUPlace2 432.58 63.49 203.68 291.15 305.79 517.63 532.79 1181.30 1.02

Kraftwerk 457.92 78.60 208.41 280.93 315.53 569.36 545.94 1170.85 1.07

DPlace 572.98 102.75 329.92 380.14 364.45 752.08 682.87 1438.99 1.40

NTUPlace3 448.58 61.08 203.39 278.89 301.19 509.54 521.65 1099.66 1.00

www.manaraa.com

72

PART II

PLACEMENT IN A PHYSICAL SYNTHESIS FLOW

www.manaraa.com

73

CHAPTER 5. CLOCK CONSTRAINT AWARE TIMING-DRIVEN

PLACEMENT

5.1 Introduction

In nanometer-scale technology, power dissipation is one of the most important concerns for

high-performance circuit design. Power dissipation can also cause excessive heat, which leads

to other problems such as variability and cost of cooling. More importantly, power dissipation

impacts the reliability of the design, with low-power designs typically being more reliable [46].

Usually, the dynamic (or switching) power is the major component of the overall design

power. It is especially a key concern for high-performance designs like microprocessors. For

microprocessors, it is a well-known fact that the clock distribution network including the

clocked elements (e.g. latches, flip-flops and macros) consumes a majority of the total dynamic

power, because the clock network usually switches during every clock cycle [22, 50]. Studies

[20,55] have shown that the leaf level of the clock tree, i.e., nets driving the clocked elements

(hereafter referred to as latches), is a major power consumer among the entire clock distribution

network. Hence, to minimize clock network power, it is crucial to minimize the local clock

interconnect which connects from the local clock buffers (LCBs) to the latches. In other

words, the distance between the LCBs and their driven latches needs to be minimized.

In a conventional physical synthesis flow, a tight LCB/latch placement is accomplished by

imposing an explicit maximum allowable distance constraint between an LCB and its driven

latch. This is called the LCB to latch distance constraint. The benefits of an LCB to latch

distance constraint are two fold: (a) it reduces the local clock network wire capacitance leading

to significant reduction in the clock power consumption, (b) the maximum clock skew of latches

is naturally minimized leading to less usage of buffers.

www.manaraa.com

74

5.1.1 Previous Work on Local Clock Tree Synthesis Methodology

In recent years, latch clustering has emerged as an important technique to reduce the

total capacitance of the local clock network. To achieve this reduction, clustering techniques

typically attempt to minimize the total interconnect capacitance from an LCB to the latches.

Lu et al. [39] use the concept of register anchors to reduce the clock net wire length in a

timing-driven quadratic placement framework. A register anchor is essentially the center of

gravity of a subset of latches in the design. The register anchors indicate preferred locations

for the latches and are appended to a normal quadratic placement formulation as additional

constraints. Experimental results show a significant reduction in the clock net wire length with

a negligible increase in the wire length of the signal nets. The technique is also expanded to

address zero-skew placement of latches. Although the weighted wire length can serve as an

approximation for the timing, it is an extremely crude metric to evaluate the timing quality

of the generated placement.

A more sophisticated power-aware placement algorithm is proposed in Cheon et al. [15]

using activity-based latch clustering and net-weighting techniques. The work shares the same

goal of minimizing lower-level clock power in a design by reducing the capacitance of the clock

nets. Although the paper reports significant reduction in the power on a set of real designs, it

primarily focuses on clock power reduction. As a result, it might increase the signal net timing

and power while minimizing the same between the LCBs and latches (a fact also admitted by

the work). Based on the signal net activity rate and the switching rate of the latches, the work

determines a bound for each group (the size of the bounding box where all associated latches

need to be placed). It then determines a set of net-weights, which are kept constant during the

subsequent placement. A key disadvantage with constant net-weights is that it does not allow

the placement algorithm to dynamically trade-off between the conflicting objectives of clock

net and signal net minimization. In addition, in high performance designs, tightly packed latch

clusters are considered more preferable solutions, mainly due to clock skew problems, which

may significantly increase the number of inserted clock buffers.

Shelar [59] proposed a latch clustering algorithm to be used within a traditional clock tree

www.manaraa.com

75

Logic Synthesis

Routing

Timing Optimization

Clock Tree Synthesis

Timing Optimization

Timing-driven Placement

(a)

Latch Clustering

Clock Buffer Resizing

Clock Net Routing

Clock Buffer Duplication

(b)

Logic Synthesis

Routing

Timing Optimization

Clock Tree Synthesis

Timing Optimization

Timing-driven Placement

Logic Synthesis

Routing

Timing Optimization

Clock Tree Synthesis

Timing Optimization

Timing-driven Placement

(a)

Latch Clustering

Clock Buffer Resizing

Clock Net Routing

Clock Buffer Duplication

Latch Clustering

Clock Buffer Resizing

Clock Net Routing

Clock Buffer Duplication

(b)

Figure 5.1 (a) Traditional physical design flow (b) Clock tree synthesis

methodology employed within the physical design flow.

synthesis methodology, depicted in Figure 5.1. His work minimizes the interconnect capaci-

tance in the clock tree by using the minimum spanning tree (MST) metric as an estimation

of the interconnect capacitance. The benefits of the proposed technique are shown by em-

bedding the latch clustering within an industrial physical synthesis flow and performing more

rigorous timing and power measurements. However, the clustering method proposed in [59],

and the flow in Figure 5.1 have a vital limitation, namely, the latches are fixed in place before

performing local clock tree synthesis (LCTS). This methodology suffers from the following

issues:

• The reduction in the local clock interconnect is bounded by the locations of the latches.

Since the latches are fixed, irrespective of the clustering, we need to connect from the clock

spine to the LCBs, and in turn, to the latches. As a result, the local clock interconnect can

still be quite large. This issue is illustrated in Figure 5.2(a), which shows twelve latches

(rectangles) within the block boundary (dotted lines). Assume an LCB (square) can

drive upto six latches. Then, the latches can be partitioned into two clusters, with each

cluster being driven by an LCB placed at the centroid of the cluster. The lines between

www.manaraa.com

76

(a) Local clock interconnect based on
the methodology in [59]

(b) Allow the latches to move closer to
their corresponding LCB

Figure 5.2 Reduction in the local clock interconnect by following an en-

hanced local clock tree synthesis methodology.

the LCB and the latches represent the clock routes that will be tuned for skew/slew by a

clock router after the clustering and LCB duplication steps in Figure 5.1(b). However, if

we are allowed to move the latches, as shown in Figure 5.2(b), the local clock interconnect

can be truly minimized.

• The timing-driven placement of latches is based on an ideal clock. Due to the inaccuracy

in timing analysis by using ideal clock arrival times, the resulting placement can lead to

degraded timing when the clock trees are actually routed. In the traditional flow, since

the latches are fixed, the subsequent steps (clock routing, LCB placement and sizing) are

constrained to use these potentially incorrect latch locations. This can lead to situations

where even post-LCTS optimization may not be able to fix all the timing problems.

In [50], Puri et al. proposed a design style where the latches are placed quite close to their

driving LCB and form a “latch huddle”. This is illustrated in Figure 5.3, which shows one

LCB (long red rectangle in the center), with a cluster of latches (small red rectangles) placed

right next to the LCB. The black lines from the center of the LCB show the latches that are

www.manaraa.com

77

Figure 5.3 Latch huddle around a local clock buffer.

being driven by this LCB. Results in [50] show that this design style can significantly reduce

the capacitive load on the clock signals driven by the LCBs, and also improve timing.

However, the design style proposed in [50] requires the latches to be moved after clustering

and LCB duplication. This requires a more sophisticated clock tree synthesis methodology as

shown in Figure 5.4. In this flow, once timing-driven placement has placed the latches in their

ideal locations with respect to signal net (i.e., non-clock related net) timing; clustering and

LCB duplication is performed. An example clustering followed by LCB duplication is shown

in Figure 5.5, where the rectangles and lines represent the same information as Figure 5.3.

After clustering, a timing analysis is performed and timing-driven net-weights are generated

to reflect the timing on the signal nets. Subsequently, a new timing-driven placement with

explicit LCB to latch clustering constraints is run to obtain the latch huddles shown in Figure

5.6. From Figure 5.4(b), a new timing-driven placement is required for the following reasons:

• After clustering, it is possible for a cluster to overlap with other clusters in the design

(for example, the cluster in the top-right corner of Figure 5.5). This can happen due to

the presence of multiple clock domains in the design, which require dedicated LCBs per

domain. It can also happen due to inferior solutions being produced by the placement/

clustering algorithm. Hence, this overlap among the clusters needs to be resolved.

• The previous issue leads to certain clusters having a very large spread. As a result, the

latches may need to move by a significant distance.

www.manaraa.com

78

Logic Synthesis

Routing

Timing Optimization

Clock Tree Synthesis

Timing Optimization

Timing-driven Placement

(a)

Latch Clustering

Clock Buffer Resizing

Clock Net Routing

Clock Constraint Aware
Timing-Driven Placement

Timing Analysis &
Net-weight Generation

Clock Buffer Duplication

(b)

Logic Synthesis

Routing

Timing Optimization

Clock Tree Synthesis

Timing Optimization

Timing-driven Placement

Logic Synthesis

Routing

Timing Optimization

Clock Tree Synthesis

Timing Optimization

Timing-driven Placement

(a)

Latch Clustering

Clock Buffer Resizing

Clock Net Routing

Clock Constraint Aware
Timing-Driven Placement

Timing Analysis &
Net-weight Generation

Clock Buffer Duplication

Latch Clustering

Clock Buffer Resizing

Clock Net Routing

Clock Constraint Aware
Timing-Driven Placement

Timing Analysis &
Net-weight Generation

Clock Buffer Duplication

(b)

Figure 5.4 (a) Physical design flow for optimized local clock network (b)

Enhanced clock tree synthesis methodology (the shaded boxes

represent the enhancements).

Figure 5.5 Latch clustering and LCB duplication during local clock tree

synthesis.

www.manaraa.com

79

Figure 5.6 Latch clusters after clock constraint aware timing-driven place-

ment.

• Movement of the latches affects the non-clocked modules and signal net timing. The

non-clocked modules need to react to the movement of the latches.

Therefore, to meet timing requirements while satisfying the LCB to latch distance con-

straint, a separate clock constraint aware timing-driven placement is required after clustering.

Please note, from herein, a “latch cluster” refers to an LCB and all its driven latches.

5.1.2 Previous Work on Handling Clock Constraints During Timing-driven Place-

ment

State-of-the-art placers [6, 9, 12, 32, 61, 66] typically handle the weighted wire length mini-

mization problem, and do not pay any attention to clocking structures like latch clusters.

Typically, the input to a timing-driven global placement algorithm is a weighted netlist

hypergraph, where the individual nets in the input netlist are assigned weights based on their

timing criticalities. The rationale behind this approach is that critical nets get higher weights

during placement and hence get minimized at the expense of the non-critical nets. The objec-

tive of the placement algorithm is to minimize the weighted total wire length so as to improve

the overall timing of the design. Although timing-driven net-weighting is a crude model to

www.manaraa.com

80

represent design timing, in practice, it serves well to find a globally good placement solution

by minimizing the weighted wire length objective.

To obtain tight latch clusters in such a scenario, designers typically set an artificially high

net-weight between an LCB and its driven latches. Hence, during timing-driven placement,

there are two kinds of interacting net-weights: (a) the “true” timing-driven net-weights, (b)

the “artificial” net-weights between an LCB and its driven latches.

The key drawback with this approach is in the interaction between these two sets of net-

weights. Typically, the LCB to latch net-weights dominate the timing-driven net-weights. As

a result, the latches cannot freely migrate to their natural locations as dictated by the timing-

driven net-weights. This in turn adversely impacts the timing characteristics of the design.

Another issue with this approach is that the latches are not differentiated by their timing

criticalities while handling the LCB to latch placement (distance) constraint. Since the timing

criticality of the latches are reflected by the timing-driven net-weights (albeit in an indirect

manner), it would be beneficial to use the more critical latches in the design to guide the

placement of their associated latch cluster.

Another potential approach to obtain tight latch clusters is to consider the entire latch

cluster as a single pseudo-object (or cluster) during global placement. The key drawback

with this approach is in determining the dimensions of the pseudo-object during placement.

Incorrect dimensions might lead to a bad global placement. This can in turn lead to problems

during legalization, wherein the individual modules (LCB and latches) within the pseudo-object

need to be assigned to legal locations in the placement region. Legalization can potentially

move the LCB and/or the latches by a large distance and severely degrade the latch cluster

placement.

5.2 Key Contributions of This Work

This section outlines the placement techniques that have been developed to simultaneously

optimize timing (weighted wire length) while satisfying the LCB to latch distance constraint.

These techniques have been embedded within the RQL global placement algorithm to yield an

www.manaraa.com

81

effective force-directed Clock Constraint Aware Timing-driven Placement (CCATP) algorithm.

The effectiveness of the CCATP algorithm is demonstrated by experimental results on high-

performance industrial designs in the 45nm process technology.

The key contributions of this work in the development of a Clock Constraint Aware Timing-

driven Placement algorithm are:

• Nominal LCB to latch clock net-weights that do not dominate the timing-driven net-

weights during placement.

• Selective modulation of the LCB to latch net-weights during placement to minimize LCB

to latch distance without degrading the total weighted wire length.

• A variable net-weight for each LCB to latch connection, where the weight is set propor-

tional to the timing criticality of the latch. This ensures that the more timing-critical

latches in the design can guide the physical placement of the LCBs.

• An intermediate legalization scheme to preserve tight latch cluster placement.

• A greedy swapping technique among the latches within a cluster to minimize the number

of wires that cross on top of the LCB. This technique helps to improve wire length and

routability.

The rest of this chapter is organized as follows: Section 5.3 gives an overview of the CCATP

algorithm. Section 5.4 describes the key components of the CCATP algorithm in detail. Ex-

perimental results are reported in Section 5.5, followed by the key observations in Section 5.6.

5.3 Overview of Clock Constraint Aware Timing-driven Placement

Figure 5.7 presents the high-level flow for Clock Constraint Aware Timing-driven Placement

(CCATP) as used within the enhanced clock tree synthesis methodology of Figure 5.4(b). The

input to the placement algorithm are: (a) a weighted netlist, wherein the individual nets are

weighted according to timing criticality, (b) a set of LCBs and corresponding latches that are

identified by the latch clustering and LCB duplication steps. The shaded boxes in Figure

www.manaraa.com

82

5.7 represent the enhancements to the force-directed global placement framework of RQL to

handle latch cluster placement. From Figure 5.7, the key steps during CCATP are:

1. Initial Netlist Processing: This step determines the latch criticalities based on the timing-

driven net-weights. It then sets nominal LCB to latch net-weights for the coarse global

placement step (Section 5.4.1).

2. Circuit Clustering: As mentioned in Section 2.7 and Algorithm 2.5, circuit clustering is

performed to improve the efficiency, scalability and solution quality of the placer. Since

the latch clusters are processed in a special manner, the LCBs and latches are excluded

from the circuit clustering phase and hence, are not clustered with any other module in

the design.

3. Coarse Global Placement: This phase comprises of three steps: (a) Quadratic placement

with force-vector modulation (b) Density-aware module spreading (c) Iterative Local

Refinement.

4. LCB to Latch Net-weight Modulation: During placement, the LCB to latch net-weights

are selectively increased for clusters that have a large spread (Section 5.4.2).

5. Placement Refinement: During this phase, a series of unclustering and Iterative Local

Refinement steps are performed until a placement of the flat netlist is obtained.

6. LCB Legalization: Once the modules in the design have been reasonably spread over the

placement region, and the latches are in close proximity to their driving LCBs, the LCBs

are assigned to legal locations within the placement region (Section 5.4.3).

7. Latch Legalization: After LCB legalization, another round of placement refinement is

performed to allow the latches to adjust to the legalized locations of the LCBs. Following

which, the latches are legalized around their driving LCBs. During this process, a greedy

swapping technique is applied among the latches within a cluster to reduce the number

of wires that cross on top of the LCBs (Section 5.4.4).

www.manaraa.com

83

Initial Netlist Processing

Coarse Global Placement

Modulate LCB to Latch
Net-weights

Placement Refinement

Terminate?

Yes

No

Legalize LCBs

Placement Refinement

Legalize Latches

Legalize Non-clocked
Cells

Detailed Placement

Circuit Clustering

Initial Netlist Processing

Coarse Global Placement

Modulate LCB to Latch
Net-weights

Placement Refinement

Terminate?

Yes

No

Legalize LCBs

Placement Refinement

Legalize Latches

Legalize Non-clocked
Cells

Detailed Placement

Circuit Clustering

Figure 5.7 High-level flow for Clock Constraint Aware Timing-driven

Placement (CCATP).

www.manaraa.com

84

5.4 Handling Latch Clusters During Timing-driven Placement

This section describes the key components (shaded boxes in Figure 5.7) of the CCATP

algorithm with the help of an example given in Figure 5.8. Figure 5.8(a) shows an example

circuit with two LCBs (solid squares), each driving four latches (empty rectangles). The clock

nets between an LCB and its driven latches are depicted by the dashed lines and the signal

nets in the circuit are depicted by the solid lines. For the sake of simplicity, all the signal nets

in the circuit are two-pin nets and connect directly to the latches.

As shown in Figure 5.4(b), before placement, a timing analysis is performed and weights

are assigned to the signal (non-clock) nets reflecting their timing criticalities. To perform

timing-driven net-weighting, the sensitivity guided net-weighting scheme of Ren et al. [54] is

used.

5.4.1 Initial Netlist Processing

The purpose of the initial netlist processing step is two-fold: (a) determine the relative

criticalities of the latches in the design, (b) assign the initial net-weights to the clock nets

between an LCB and its driven latches.

In addition to the LCB, a latch belonging to a latch cluster, is connected to a set of

non-clocked modules via the signal nets. As mentioned before, the signal nets are weighted

according to their timing criticalities determined from a timing analysis step. The relative

criticalities of the latches are determined based on the sum of all the timing-driven net-weights

on the signal nets that connect the latches to the non-clocked modules in the design. For any

two latches in the design, the one with a higher total signal net-weight is deemed more critical.

For each clock net between an LCB and its driven latch, the net-weight comprises of two

components: (a) a constant, base weight, which is equal to the nominal net-weight of a non-

critical signal net, (b) a variable, criticality weight, which reflects the timing criticality of the

latch. To bias the latch cluster towards the more critical latch(es) within the cluster, the

criticality weight component is given a value that is proportional to the signal net-weights

used in determining the relative latch criticalities (as outlined before).

www.manaraa.com

85

With respect to a single latch cluster, one method to set the net-weights on the clock nets

between the LCB and its driven latches is as follows:

• Step 1: Assign a nominal net-weight to the base weight component.

• Step 2: For each latch within the cluster, determine the sum of the net-weights on the

signal nets connected to the latch. Let this be denoted as latch signal net-weight.

• Step 3: Set the criticality weight component for the clock net on the latch with the lowest

latch signal net-weight to be minimum criticality weight.

• Step 4: Set the criticality weight component for the clock net on the latch with the

highest latch signal net-weight to be maximum criticality weight.

• Step 5: Use linear scaling to determine the criticality weight component for the clock

nets on all the other latches in the cluster.

• Step 6: For each latch, set the LCB to latch clock net-weight as:

clock net-weight = criticality weight × base weight.

Within CCATP, the minimum criticality weight is assigned a value of 0.1, and the maxi-

mum criticality weight is assigned a value of 1.0.

The initial netlist processing step is depicted in Figure 5.8(a), where the criticality of the

various signal nets are reflected by the thickness of the lines depicting the nets. As seen from

the figure, the latches connected to the PIs/POs have low timing-driven net-weights, whereas,

the two latches that are connected to each other have a very high timing-driven net-weight.

Based on the net-weights on the signal nets, for each LCB to latch clock net, the appropriate

criticality weight and corresponding clock net-weight is determined using the steps outlined

above.

5.4.2 LCB to Latch Net-weight Modulation

To tighten specific latch clusters in the design, LCB to latch net-weight modulation is

used at various stages in the placement flow. To identify the latch clusters with a large span,

www.manaraa.com

86

initially, for each latch cluster, the average and maximum distance of the latches from the

center of their driving LCBs is determined. A weighted function of the average and maximum

distance values is then calculated. The latch clusters with a large span are identified as the

ones that have a function value greater than a specified threshold. To optimize the placement

of these latch clusters (reduce their span), the base weight component of the LCB to latch

clock net-weight is then increased for all the latches within these clusters. This is followed by a

set of placement refinement steps wherein the span of these latch clusters is gradually reduced.

The LCB to latch net-weight modulation step is shown in Figure 5.8(c) where the base weight

component of all the clock nets is increased by a factor of two. Figure 5.8(d) then shows the

locations of the latch clusters after the subsequent placement refinement step.

LCB to latch net-weight modulation is a critical step in the overall CCATP algorithm.

Since the net-weights on the clock nets are increased in a gradual manner, the latch cluster

placement is optimized over several iterations of refinement. This in turn allows the non-

clocked modules to adjust their locations in a gradual manner based on the movement of the

latches, therby optimizing the signal net wire length. As a result, there is minimal impact to

the total wire length of the design.

5.4.3 LCB Legalization

Once the modules in the design have been reasonably spread over the placement region

and the latches are sufficiently close to the LCBs, the LCBs are assigned to legal locations

in the placement region. The LCB legalization step ignores all the other movable modules in

the design (both clocked and non-clocked cells). It legalizes the LCBs only in the presence

of the fixed macros or placement blockages in the design. LCB legalization is a three step

process: (a) in the first step, each LCB is artificially inflated to a size that is proportional to

the number of latches being driven by the LCB, (b) this is followed by the legalization step

wherein the overlap among the LCBs and/or placement blockages is resolved and the LCBs

are assigned to legal locations within the placement region, (c) finally, the LCBs are deflated

back to their original sizes. Once the LCBs have been legalized, they are fixed in place and

www.manaraa.com

87

behave as placement blockages for all the subsequent steps of global placement.

Inflation of the LCBs ensures that the subsequent latch legalization step has sufficient

room to accommodate the latches around the LCBs. In addition, considering only the LCBs

and placement blockages during LCB legalization ensures that the LCBs are legalized with

minimum perturbation from their original locations.

5.4.4 Latch Legalization

LCB legalization is followed by another round of placement refinement for the latches to

react and adjust to the legalized locations of the LCBs. Each latch within a cluster is then

placed at the center of its driving LCB and legalized by using a spiral-based legalization

technique. The advantage of a spiral-based legalization technique is that it ensures that the

latches are relocated by the minimum possible distance from the center of their driving LCB.

Although legalization ensures that each latch is placed in close proximity to its driving

LCB, the spiral-based legalization technique is unaware of the relative locations of the latches

before the legalization step. In other words, the initial (before legalization) relative locations

of the latches with respect to their driving LCB and the non-clocked modules to which they

are connected via the signal nets, is not respected during legalization. This can potentially

create a “rat’s nest” of wiring around, and on top of the LCB. Hence, after latch legalization,

for each cluster, a greedy swapping is performed among all its latches. The objective of this

swapping step is to minimize the number of wires that cross on top of the LCB. This ensures

that the latches in the cluster end up being in the correct relative locations with respect to

their connections with the LCB and the non-clocked modules in the design.

5.4.5 Advantages of the Clock Constraint Aware Timing-driven Placement Al-

gorithm

The CCATP algorithm incorporates a number of techniques to specifically handle latch

clusters within a timing-driven placement framework. The key advantages of the developed

techniques are:

www.manaraa.com

88

1. Determine latch criticalities

2. Set “nominal” LCB to latch net-weights

2

2

1

10

2

2

10

1

Critical Latches

1. Determine latch criticalities

2. Set “nominal” LCB to latch net-weights

2

2

1

10

2

2

10

1

Critical Latches

2

21

10

2

2

10

1

2

21

10

2

2

10

1

(a) (b)

4

42

20

4

4

20

2

4

42

20

4

4

20

2

4

42

20

4

4

20

2

4

42

20

4

4

20

2

(c) (d)

Figure 5.8 Clock constraint aware timing-driven placement on an example

circuit. (a) Connections in the circuit and initial netlist pro-

cessing (b) Locations of the latch clusters after coarse global

placement (c) LCB to latch net-weight modulation (d) Loca-

tions of the latch clusters after placement refinement.

www.manaraa.com

89

1. Setting nominal LCB to latch net-weights and selective net-weight modulation does not

significantly impact the global placement optimization of the signal nets. This is verified

by the experimental results in Table 5.3 and Table 5.4.

2. The conventional approach of setting a constant, high net-weight between an LCB and

its driven latches, keeps the latches close to the LCB throughout the placement step.

The net effect is that the LCB is not guided by the latches. Rather, the LCB pulls all its

driven latches. On the other hand, the effect of low net-weights and gradual modulation

within CCATP allows the LCBs to be guided by the latches.

3. Latch criticality based variable net-weights ensure that the LCBs are further guided by

the most timing critical latches in the cluster. This improves the overall timing of the

design.

4. Intermediate legalization of the LCBs and latches without considering the non-clocked

modules ensures tight latch cluster placement satisfying the LCB to latch distance con-

straints.

5. The inflation of the LCBs during legalization ensures that there is enough space around

the LCBs to accommodate their associated latches, and prevent any unexpected spiralling

of the latches by a large distance.

6. In addition, a spiral-based legalization technique ensures that the latches are placed at

the minimum possible distance from the center of their driving LCB. The subsequent

greedy swapping among the latches ensures that the latches end up being in the proper

relative location with respect to their driving LCB and their signal net connections.

7. Finally, the developed techniques are general enough to be embedded within any global

placement framework.

www.manaraa.com

90

5.5 Experimental Results

The CCATP algorithm is implemented within the PDS industrial physical synthesis frame-

work [3, 64]. PDS is a state-of-the-art physical synthesis framework that has been used in the

design of many high performance integrated circuits. All the results presented in this section

are on high performance industrial designs in the 45nm process technology. The design statis-

tics are given in Table 5.1 in terms of the number of modules, the number of clocked elements

(Latches) and the number of local clock buffers (LCBs).

Table 5.1 Statistics for a set of high performance industrial designs to test

the CCATP algorithm.

Ckt Modules Latches LCBs

ckt 1 69k 19981 1000

ckt 2 103k 8796 387

ckt 3 141k 20209 948

ckt 4 200k 31543 1816

ckt 5 11k 3878 160

ckt 6 232k 48234 2424

ckt 7 102k 18406 1057

To demonstrate the effectiveness of the developed techniques, the following algorithms are

compared:

• TP: Default timing-driven placement with high and constant LCB to latch net-weights.

• CCATP: Clock Constraint Aware Timing-driven Placement, that includes: (a) variable

net-weights (b) LCB to latch net-weight modulation (c) intermediate LCB and latch

legalization followed by greedy swapping of the latches.

For both the algorithms, the sensitivity guided net-weighting scheme of Ren et al. [54] was

used to generate the timing-driven net-weights for the signal nets. The metrics for comparison

are the LCB to latch distance statistics, half-perimeter wire length (HPWL), design timing

and global routing congestion at various stages of the physical synthesis flow.

www.manaraa.com

91

5.5.1 Latch Cluster Placement, Wire Length and Design Timing After Timing-

driven Placement

Table 5.2 compares the latch cluster placement statistics between the two algorithms on

the following distance metrics:

• Max D: The maximum LCB to latch distance among all the latch clusters in the design.

• Max(Avg D): For each latch cluster, let Avg D represent the average LCB to latch dis-

tance within the cluster. Then, Max(Avg D) gives the maximum value of Avg D over

all the latch clusters in the design.

• D 100: The number of latches that are placed at a distance greater than 100 placement

units from the LCB. (As a measure of comparison, a circuit row in these designs is of

height 12 placement units).

Table 5.2 Comparison of the LCB to latch distance statistics between tim-

ing-driven placement (TP) and clock constraint aware timing–

driven placement (CCATP). Max D: Maximum LCB to latch

distance. Max(Avg D): Maximum value of the average LCB to

latch distance within a cluster. D 100: Number of latches placed

at a distance greater than 100 placement units from the LCB.

Max D Max(Avg D) D 100

Ckt
TP CCATP

CCATP

TP
TP CCATP

CCATP

TP
TP CCATP

ckt 1 169 96 0.57 95.11 49.24 0.52 56 0

ckt 2 111 100 0.90 52.49 51.58 0.98 1 1

ckt 3 100 89 0.89 58.82 49.54 0.84 5 0

ckt 4 120 84 0.70 61.39 52.17 0.85 16 0

ckt 5 120 78 0.65 54.65 44.07 0.81 4 0

ckt 6 115 100 0.87 58.59 50.50 0.86 10 1

ckt 7 100 79 0.79 84.85 50.00 0.59 5 0

Avg 0.77 0.78

As seen from Table 5.2, in spite of using nominal net-weights, CCATP is able to produce

superior latch cluster placement as compared to the default timing-driven placement algorithm

www.manaraa.com

92

using constant, high net-weights. In particular, on average, CCATP is able to reduce the

maximum LCB to latch distance (Max D) by 23% as compared to the default algorithm.

The reasons for this substantial decrease in the LCB to latch distance are as follows:

• In the default flow, during global placement, the high net-weights between the LCB and

its driven latches tend to clump the latches on top of the LCB for the entire duration of

placement. As a result, it appears as if there is enough space around an LCB to place

other modules (clocked as-well-as non-clocked cells). In reality, this is not the case as

the latches need to be placed around the LCB in the final solution. Due to the presence

of other modules close to the LCB (especially other LCBs), the latches tend to move

by a significant amount during legalization. In contrast, CCATP does not set a high

LCB to latch net-weight and uses net-weight modulation to guide the placement of the

latch clusters. Hence, the latches never end up being on top of the LCB during global

placement. This presents a more realistic picture of the placement utilization to the

spreading techniques within global placement. As a result, there is enough space around

an LCB for the latches to be legalized without significant movement during legalization.

• In addition, CCATP performs the following steps to explicitly reserve the space around

an LCB for its associated latches: (a) LCB inflation prior to legalization - this separates

the LCBs during legalization thereby creating more space around the LCBs for their

associated latches (b) after LCB legalization, an additional placement refinement step is

performed which enables the latches to adjust to the legalized locations of the LCBs.

Table 5.3 and Table 5.4 compare the two algorithms after the timing-driven placement step.

Table 5.3 shows the total HPWL of the design and Table 5.4 shows the worst slack and Figure

of Merit (FOM) of the design. In Table 5.4, the FOM is a weighted sum of all the negative

path slacks in the design, and is a measure of the overall slack histogram of the design.

From column four of Table 5.3, on average the CCATP algorithm obtains more than 50%

reduction in the total HPWL of the design as compared to the TP algorithm. In addition,

columns four and seven of Table 5.4 show a 53% improvement in the worst slack and 69%

improvement in the Figure of Merit (overall design timing) for the CCATP algorithm.

www.manaraa.com

93

Table 5.3 Comparison of the HPWL (×e6) between timing-driven place-

ment (TP) and clock constraint aware timing-driven placement

(CCATP) after the timing-driven placement step.

Ckt TP CCATP
CCATP

TP

ckt 1 32.67 12.68 0.39

ckt 2 26.26 18.05 0.69

ckt 3 62.64 32.76 0.52

ckt 4 106.08 40.42 0.38

ckt 5 35.22 18.44 0.52

ckt 6 167.63 57.11 0.34

ckt 7 52.26 21.14 0.40

Avg 0.46

Table 5.4 Comparison of the design timing (worst slack and timing fig-

ure of merit) between timing-driven placement (TP) and clock

constraint aware timing-driven placement (CCATP) after the

timing-driven placement step.

Worst Slack (ns) Figure of Merit (ns)
Ckt

TP CCATP %Improv TP CCATP %Improv

ckt 1 -1.81 -0.19 89.04 -670 -14 97.91

ckt 2 -100.32 -8.93 91.10 -14225 -1949 86.30

ckt 3 -6.18 -5.99 2.95 -2987 -1622 45.70

ckt 4 -3.84 -1.41 63.24 -8444 -295 96.51

ckt 5 0.09 0.11 19.57 0 0 0.00

ckt 6 -12.66 -8.82 30.38 -20833 -6954 66.62

ckt 7 -2.84 -0.69 75.41 -991 -79 92.03

Avg 53.10 69.29

www.manaraa.com

94

The results in Tables 5.2 – 5.4 show that not only does the CCATP algorithm obtain better

latch cluster placement, it also obtains significantly better placement solutions in terms of wire

length and timing. These results empirically demonstrate the effectiveness of the techniques

incorporated within the CCATP algorithm.

5.5.2 Wire Length, Design Timing and Global Routing Congestion Analysis at

the End of Physical Synthesis

As mentioned before, the CCATP algorithm is embedded within the PDS physical synthesis

framework. Hence, after placement, a host of timing optimization transforms like buffer inser-

tion, gate sizing, logic restructuring, etc., are run to further improve the design timing. It is

quite possible for the gains in HPWL and design timing that were obtained after timing-driven

placement, to be lost by the end of physical synthesis. To show that the superior placement

results obtained by the CCATP algorithm persist till the end of physical synthesis, Table 5.5 –

Table 5.7 give the final total HPWL, design timing and global routing congestion analysis

results at the end of the physical synthesis flow. In Table 5.7, the routing congestion of a

design is measured by invoking an industrial strength global router. The numbers reported in

the table give the average congestion number (in percentage) of the worst 20% global routing

tiles in the design. A value above 100 implies that the design is unroutable. In practice, it is

desirable to have a low value for this metric to make the design more routable.

Table 5.5 – Table 5.7 show that the superior placement results of CCATP are maintained

till the end of physical synthesis. This further indicates that CCATP is able to find globally

better solutions in terms of HPWL and design timing. In particular, from column four of Table

5.5, the CCATP-based flow is able to obtain more than 50% reduction in the total HPWL at

the end of physical synthesis as compared to the TP-based flow. In addition, columns four and

seven of Table 5.6 show a 40% improvement in the worst slack and about 6% improvement in

the timing Figure of Merit of the design. Finally, from Table 5.7, in terms of routability, the

CCATP-based flow yields more than 30% improvement in the global routing congestion analysis

results versus the TP-based flow. In fact, on four out of the seven designs, the TP-based flow

www.manaraa.com

95

Table 5.5 Comparison of the HPWL (×e6) between timing-driven place-

ment (TP) and clock constraint aware timing-driven placement

(CCATP) based flows at the end of physical synthesis.

Ckt TP CCATP
CCATP

TP

ckt 1 33.72 13.95 0.41

ckt 2 28.41 19.85 0.70

ckt 3 67.53 36.09 0.53

ckt 4 109.44 43.69 0.40

ckt 5 37.70 20.48 0.54

ckt 6 172.51 62.51 0.36

ckt 7 54.34 22.84 0.42

Avg 0.48

Table 5.6 Comparison of the design timing (worst slack and timing figure

of merit) between timing-driven placement (TP) and clock con-

straint aware timing-driven placement (CCATP) based flows at

the end of physical synthesis.

Worst Slack (ns) Figure of Merit (ns)
Ckt

TP CCATP %Improv TP CCATP %Improv

ckt 1 -0.026 -0.025 3.85 -2 -2 0.00

ckt 2 -0.027 -0.025 7.41 -7 -5 28.57

ckt 3 -0.048 -0.026 45.83 -10 -4 60.00

ckt 4 -0.023 -0.023 0.00 -1 -2 -100.00

ckt 5 -0.018 0.014 177.78 0 0 0.00

ckt 6 -0.060 -0.051 15.00 -21 -10 52.38

ckt 7 -0.021 -0.014 33.33 0 0 0.00

Avg 40.46 5.85

www.manaraa.com

96

Table 5.7 Global routing congestion analysis results of the timing-driven

placement (TP) and clock constraint aware timing-driven place-

ment (CCATP) based flows at the end of physical synthesis.

Ckt TP CCATP %Improv

ckt 1 102.015 67.349 33.98

ckt 2 82.412 73.404 10.93

ckt 3 113.148 80.822 28.57

ckt 4 137.199 76.354 44.35

ckt 5 77.274 62.783 18.75

ckt 6 162.184 83.301 48.64

ckt 7 98.964 70.014 29.25

Avg 30.64

generates unroutable results. This effectively invalidates the physical synthesis solution from

the TP-based flow on these designs. The improved routability in the CCATP-based flow can

be attributed to the following two reasons:

• Lower total HPWL which typically translates to lesser usage of routing resources.

• Better latch placement within the individual latch clusters (greedy latch swapping within

the clusters alleviates the routing congestion around the LCBs by placing the latches in

better locations with respect to their connections to the non-clocked modules).

5.6 Key Findings and Observations

Latch clustering and tight latch cluster placement are essential in reducing the local clock

network power in high performance designs. Once the latch clustering is performed, it is the job

of the global placement algorithm to place the latches in a tight huddle around their associated

LCBs. Simultaneously, the placement algorithm should not degrade the total wire length and

overall timing of the design. Currently the top-performing academic placers handle the wire

length minimization problem, and do not pay any attention to clocking structures like latch

clusters during placement. This chapter shows that using the traditional approach of imposing

constant, high net-weights between an LCB and its associated latches to obtain tight latch

www.manaraa.com

97

clusters, adversely impacts the total wire length, timing and routability of the design.

Alternately, several techniques have been developed and incorporated within force-directed

global placement, to yield a Clock Constraint Aware Timing-driven Placement algorithm. The

CCATP algorithm simultaneously optimizes timing (weighted wire length) while satisfying

tight LCB to latch distance constraints. Experimental results on high-performance indus-

trial designs show that the CCATP algorithm can obtain high-quality latch cluster placement

without degrading the total wire length, design timing and routability.

www.manaraa.com

98

CHAPTER 6. INTEGRATED TIMING OPTIMIZATION AND

PLACEMENT

6.1 Introduction

Timing closure happens to be one of the primary objectives of a physical synthesis tool.

In this respect, timing-driven placement is a critical step in any physical synthesis flow. The

quality of timing-driven placement significantly impacts the ability of the physical synthesis

tool or designer to achieve timing closure.

Existing timing-driven placement techniques can be broadly classified into two categories:

(a) global timing-driving placement techniques [21, 24, 26, 29, 33, 37, 51, 54, 56, 74], and (b)

incremental timing-driven placement techniques [14,16,17,40,41,73].

6.1.1 Global Timing-driven Placement Techniques

Global timing-driven placement techniques place the entire circuit netlist and redo the

placement from the beginning, ignoring the module locations that were obtained from any of

the previous stages within a physical synthesis flow. They typically use a net-based approach,

where they try to minimize the wire length of the “nets” on the critical paths (also referred to as

“critical nets”). The rationale being that optimizing the wire length of the critical nets would

implicitly minimize critical path lengths, leading to better critical path delay for the design.

To guide the global placement algorithm, these techniques transform the timing constraints or

specifications into net specifications, that appear as either net-weights [21,33,37,54,56,74], or

net-length constraints [24,29,51].

To generate reasonably accurate net specifications (net-weights or net-length constraints),

these techniques usually follow the physical synthesis flow shown in Figure 6.1. Initially, a

www.manaraa.com

99

pure wire length driven global placement is performed to obtain some physical information

for all the modules in the design. Since the initial placement is timing unaware, this stage

is followed by a coarse timing optimization stage, which brings the design to a reasonable

electrical and timing state. Based on a timing analysis after the coarse timing optimization

stage, net specifications are generated to reflect the timing criticality of the nets in the design.

These specifications are used to guide the subsequent timing-driven placement stage, which

optimizes the critical nets to improve design timing.

Initial Placement

Coarse Timing Optimization

EP1

EP2

EP3

Clock Insertion
and Optimization

Detailed Placement
and Optimization

Fine Timing Optimization

Routing

Post Route Optimization

EP4

Net-weights /
Net-length Constraints

Timing-driven Placement

Initial Placement

Coarse Timing Optimization

EP1

EP2

EP3

Clock Insertion
and Optimization

Detailed Placement
and Optimization

Fine Timing Optimization

Routing

Post Route Optimization

EP4

Net-weights /
Net-length Constraints

Timing-driven Placement

Figure 6.1 A physical synthesis flow using net-based timing-driven place-

ment. To reflect the timing criticality of the nets, net specifica-

tions can be in the form of net-weights or net-length constraints.

www.manaraa.com

100

The key drawbacks of global timing-driven placement techniques are as follows:

• Global timing-driven placement techniques can result in significant degradation in the

total wire length of the design. The reason being, there is no effective method to come up

with a good set of net specifications to effectively trade-off total wire length and design

timing. Since timing-driven placement minimizes the wire length of the critical nets at the

expense of the non-critical nets, inferior net specifications can overly optimize the critical

nets leading to a substantial increase in the total wire length. Increase in wire length can

also cause severe routing congestion. This is depicted in Figure 6.2 which shows the total

wire length and routing congestion at various stages of the physical synthesis flow given in

Figure 6.1 on a high performance industrial design. The regions colored pink and purple

have more than 100% global routing resource usage - indicating unroutable regions. It

can be seen that the global timing-driven placement stage significantly increased total

wire length and routing congestion (Figure 6.2 (EP 3)) as compared to the coarse timing

optimization stage (Figure 6.2 (EP 2)).

• Global timing-driven placement techniques do not have any interaction with timing op-

timization transforms like buffer insertion, gate sizing, etc., for the entire duration of

placement. Purely minimizing the critical net wire length without performing any timing

optimization in between, will in most cases, degrade the design timing after placement.

This is shown in Table 6.1 which gives the design timing at various stages of the physical

synthesis flow shown in Figure 6.1 on two of the benchmark designs considered in Section

6.9. As seen from Table 6.1, although the design timing at the end of fine timing opti-

mization (EP 4), is better than what is obtained after coarse timing optimization (EP

2), there is a significant degradation at the end of timing-driven placement (EP 3). In

addition, a close interaction with timing optimization can potentially re-buffer a net or

re-size a gate instead of the corresponding net getting over-optimized during placement

at the expense of the other nets in the design. This can potentially lead to significant

savings in total wire length, a fact that is demonstrated by the experimental results in

Section 6.9.

www.manaraa.com

101

Stage Steiner Wire Length (×e6) Routing Congestion

EP 1 140.29

EP 2 146.94

EP 3 160.10

Figure 6.2 Total wire length and routing congestion at various stages of

the physical synthesis flow given in Figure 6.1. (EP 1) After

initial placement (EP 2) After coarse timing optimization (EP

3) After timing-driven placement. (Regions colored pink and

purple have more than 100% global routing resource usage).

www.manaraa.com

102

Table 6.1 Design timing at various stages of the physical synthesis flow

shown in Figure 6.1. Although the design timing at the end of

fine timing optimization (EP 4), is better than what is obtained

after coarse timing optimization (EP 2), there is a significant

degradation at the end of timing-driven placement (EP 3).

Evaluation Worst Slack Number of
Design

Point (ns) Negative Paths

EP 1 -246.99 21377

EP 2 -0.71 10203
ckt 5

EP 3 -4.03 12110

EP 4 -0.26 2578

EP 1 -976.79 73524

EP 2 -1.14 6610
ckt 8

EP 3 -24.40 24464

EP 4 -0.38 1167

• In addition, net specifications are just an indirect measure of the actual timing con-

straints. It is extremely difficult to come up with a good set of net specifications that

can effectively optimize design timing within placement.

• For most of the global placement techniques, net specifications are generated at the

beginning of timing-driven placement, and are kept constant during the placement stage.

This introduces an additional level of inaccuracy. Placement changes can invalidate the

timing upon which the net specifications were initially generated. For example, nets that

were critical in the beginning could become non-critical very early on during placement.

Over-optimizing these nets could cause other non-critical nets to become critical.

• Dynamic updation of net specifications during global placement have been proposed (e.g.,

[21, 24, 56]). But in most cases, to maintain placement efficiency, the net specifications

are updated using inaccurate timing models. Even if net specifications are updated

using accurate timing from a static timing engine, they are based on illegal locations

of the modules, as there will be significant module overlap during global placement. In

addition, dynamic updation of net specifications during global placement can potentially

cause oscillations during placement, resulting in issues with timing convergence.

www.manaraa.com

103

6.1.2 Incremental Timing-driven Placement Techniques

Incremental timing-driven placement techniques place a subset of the circuit netlist, re-

taining the locations of a majority of the modules as obtained from the previous stage within

a physical synthesis flow. They typically use a path-based approach, wherein they model the

various physical properties like gate delay, interconnect delay etc., during placement, and try to

directly optimize the timing critical paths in the design. Although many flavors exist, a major-

ity of these techniques use the approach of linear programming [31], to perform timing-driven

incremental placement.

The key drawbacks of incremental timing-driven placement techniques are:

• To perform module movement, these techniques often rely on inaccurate or crude models

for the various physical properties like gate delay, interconnect delay etc. Typically, they

use a linear model for the interconnect delay, which breaks down when the modules need

to move by a large distance. As a result, they constrain the movement of the modules to

a local region (e.g., [16,17,40]).

• Since incremental placement techniques rely on computationally intensive mathematical

programming techniques, they are limited in their scope in terms of the number of paths

that can be considered during placement. Hence, they cannot be used during the early

stages of physical synthesis where a large number of paths need to be simultaneously

optimized.

• As with global placement techniques, they typically do not interact with timing optimiza-

tion transforms during placement. As an exception, certain techniques for considering

optimization during placement have been proposed (e.g., [14]), but again, they rely on in-

accurate and simple delay models that do not reflect the complexities of nanometer-scale

integrated circuit design.

• Incremental timing-driven placement techniques typically ignore module overlap con-

straints during the solution of the mathematical program. To resolve the overlaps among

the modules, these techniques rely on a subsequent legalization step which is often timing

www.manaraa.com

104

unaware. This can lead to a degradation in design timing as there is no guarantee for

the legalization step to preserve the design timing as seen at the end of the critical path

optimization step.

• The legalization issue is particularly magnified in modern designs that contain numerous

fixed macros which appear as placement blockages. This results in a highly fragmented

placement region in which the modules need to be placed. Incremental placement tech-

niques do not explicitly model and account for placement blockages during critical path

optimization.

• Finally, they do not address other placement issues like placement density constraints,

which are required to provide space for timing optimization and routing. As with global

placement techniques, excessive packing of modules within a local region during incre-

mental placement can cause routing congestion issues.

6.2 Key Contributions of This Work

This work is motivated by the following observations: (a) a robust and high-quality timing

closure flow requires a close coupling between placement and timing optimization (e.g., buffer

insertion and gate sizing), and (b) both steps should rely on accurate timing information from

a state-of-the-art timing analysis tool which can model the complexities of nanometer-scale

VLSI design.

In this respect, this chapter describes an Integrated Timing Optimization and Placement

(ITOP) algorithm to achieve timing closure on nanometer-scale VLSI designs. In contrast to

existing approaches, ITOP does not rely on a net specification based timing-driven placement,

or on delay modeling followed by computationally intensive mathematical programming. To

achieve timing closure within a physical synthesis flow, it uses an incremental approach with

tight integration between placement and timing optimization, to gradually improve design

timing without degrading wire length and routability.

The key contributions of this work in the development of an Integrated Timing Optimiza-

www.manaraa.com

105

tion and Placement algorithm are:

• A simple, yet effective netlist transformation technique to model the critical paths in

the design, so that they can be effectively optimized during placement. To identify the

critical paths, this technique uses accurate timing from a timing analysis engine.

• An efficient incremental placement technique that directly optimizes critical path lengths

while considering placement blockages during critical path optimization. It should be

noted, none of the existing path-based approaches to timing-driven placement explicitly

model placement blockages during critical path optimization.

• A tight integration of placement with incremental timing optimization, which in turn

uses accurate timing information from a static timing engine to perform buffer insertion

and gate sizing on the design.

• An iterative flow that includes periodic congestion mitigation, wire length recovery and

slack histogram compression, to improve design timing without sacrificing total wire

length and routability.

Since ITOP has been primarily developed to improve design timing during the early stages

of physical synthesis (in other words, have a global impact on the design timing), it is embedded

within a physical synthesis framework as shown in Figure 6.3. Please note, the incremental

nature of ITOP also makes it attractive to perform fine-grained critical path optimization.

Hence, it can also be employed within the detailed placement and optimization stage of physical

synthesis if required (Figure 6.1).

The rest of this chapter is organized as follows: Section 6.3 provides an overview of the

ITOP algorithm. This is followed by Sections 6.4 – 6.7 that describe the individual components

of the algorithm in detail. Section 6.8 gives the detailed algorithm for ITOP as employed within

an industrial physical synthesis framework. Experimental results on industrial designs in the

65nm and 45nm process technology nodes are reported in Section 6.9. The chapter concludes

with some key observations in Section 6.10.

www.manaraa.com

106

Initial Placement

Integrated Timing
Optimization and
Placement (ITOP)

Coarse Timing Optimization

Clock Insertion
and Optimization

Routing

Post Route Optimization

Initial Placement

Integrated Timing
Optimization and
Placement (ITOP)

Coarse Timing Optimization

Clock Insertion
and Optimization

Routing

Post Route Optimization

Figure 6.3 A physical synthesis flow incorporating Integrated Timing Op-

timization and Placement.

6.3 Overview of Integrated Timing Optimization and Placement

Figure 6.4 gives a high-level view of the ITOP algorithm. The input to ITOP is a placed

and coarsely optimized design. ITOP then uses an iterative approach to improve design timing

in an incremental manner. From Figure 6.4, the key steps during ITOP are:

1. Critical Path Smoothing: The goal of this step is to smooth (or straighten) the critical

paths in the design and minimize critical path lengths. It comprises of two steps: (a)

Slack-based Critical Path Threading – to identify, and model the critical paths in the

design (Section 6.4.1), (b) Incremental Timing-driven Placement – to re-place the mod-

ules on the critical paths so as to straighten the critical paths and minimize critical path

lengths (Section 6.4.2).

2. Congestion Mitigation and Wire Length Recovery: The goal of this step is to preserve the

www.manaraa.com

107

No

ITOP

Incremental Timing Optimization

Timing Improvement?

Yes

Congestion Mitigation
and

Wire Length Recovery

Critical Path Smoothing
• Slack-based Critical Path Threading
• Incremental Timing-driven Placement

Slack Histogram Compression

Coarsely Optimized Design

End

No

ITOP

Incremental Timing Optimization

Timing Improvement?

Yes

Congestion Mitigation
and

Wire Length Recovery

Critical Path Smoothing
• Slack-based Critical Path Threading
• Incremental Timing-driven Placement

Slack Histogram Compression

Coarsely Optimized Design

End

Figure 6.4 High-level flow for Integrated Timing Optimization and Place-

ment (ITOP).

www.manaraa.com

108

routability and wire length characteristics of the incoming placement to ITOP. This is

achieved by periodically performing placement density management by moving the non-

critical modules in the design to maintain the density profile of the incoming placement.

In addition, detailed placement transforms like module swapping, flipping, etc., are run

to recover wire length (Section 6.5). Please note, this step is not performed during every

iteration of ITOP. Hence, it is represented by the dashed box in Figure 6.4.

3. Incremental Timing Optimization: This step uses accurate timing information from a

static timing engine to perform quick optimization (e.g., buffering and gate sizing) to

improve the timing on the critical paths in the design (Section 6.6).

4. Slack Histogram Compression: Periodically in the iterative flow, a global timing opti-

mization is also performed to compress the entire slack histogram (Section 6.7). Please

note, this step is not performed during every iteration of ITOP. Hence, it is represented

by the dashed box in Figure 6.4

6.4 Critical Path Smoothing

The key objectives of the critical path smoothing step are: (a) straighten or smooth the

critical paths in the design, subject to a maximum perturbation constraint on the modules

forming the paths, (b) distribute the modules evenly along their respective paths. These

objectives are achieved by using a two-step approach that comprises of first, modeling the

critical paths in the design, and second, optimizing them during placement. The remainder of

this section describes these steps in detail.

6.4.1 Slack-based Critical Path Threading

During each iteration of ITOP, this step uses the timing report from a state-of-the-art static

timing engine to identify the critical paths in the design. For each iteration, the critical paths

are identified as follows: To satisfy the timing requirements for the design, circuit designers set

an overall slack threshold value (normally “zero”) for the design. Usually, all the paths that

www.manaraa.com

109

have a slack value below the slack threshold (“negative slack”) are considered critical. Since

ITOP uses an incremental approach to gradually improve design timing, only a small subset

of the paths with a negative slack are considered to be critical during each iteration. These

happen to be the paths with the most negative slack values among the negative slack paths in

the design.

Once the critical paths have been identified, for each path, the modules on the path are

linked or “threaded” together via additional two-pin nets. These nets are assigned a higher

weight than the default net-weight for a non-critical net so that the subsequent placement step

can effectively minimize the two-pin net lengths. Minimizing the lengths of the two-pin nets

forming the path consequently minimizes the total path length. Within ITOP, these two-pin

nets are termed as “path-threading attractions” and their net-weight is set to be 10× the

default net-weight. As an example, Figure 6.5(a) shows a sample netlist, with the bold arrows

representing the two critical paths in the design. Figure 6.5(b) shows the transformed netlist,

with the modules on the critical paths being threaded using additional two-pin nets that have a

high net-weight (solid lines linking the modules on the critical paths). Please note, if the same

set of modules appear in multiple critical paths, all the attractions between any two modules

are coalesced and only a single attraction is added between them. For example, from Figure

6.5(a), the modules A, B, and C are shared by both the critical paths. In Figure 6.5(b), only

a single attraction is added between modules A and B, and between modules B and C.

During the early stages of the flow there can be thousands of paths that do not meet their

timing requirements. To obtain a tight coupling between placement and timing optimiza-

tion, during each ITOP iteration, only a few hundred paths are considered for threading and

placement refinement.

To set the net-weights on the two-pin nets, critical path threading does not use complex

schemes that rely on path counting [37] or slack and delay sensitivity [40, 54, 74]. Instead,

it uses a simple technique wherein it sets a constant weight on all the attractions which is

independent of the path slacks. The main objective of critical path threading is to identify the

modules that need to be re-placed during incremental placement. In addition, the modules

www.manaraa.com

110

are not moved by a large distance during placement. Therefore, this relatively simple net-

weighting scheme coupled with incremental placement is adequate to significantly improve the

overall design timing. This is validated by the experimental results in Section 6.9.

(a)

QD

QD

A

B

C

QD QD

QD QD

A

B

C

(b)

QD

QD

QD QD

QD QD

Figure 6.5 Slack-based Critical Path Threading. (a) An example netlist.

The bold arrows represent the critical paths in the design (b)

Critical path threading via additional two-pin nets with a high

net-weight.

www.manaraa.com

111

6.4.2 Incremental Timing-driven Placement

The goal of the incremental timing-driven placement step is to optimize the critical paths

in the design by re-placing the movable modules constituting the paths. Previous approaches

typically use either quadratic programming [21,54,56] or linear programming [16,17,31,40,49,

73] to optimize the critical paths during placement. In contrast, ITOP uses a greedy heuristic

that relies on iterative movement of the modules in a local neighborhood to perform critical

path optimization. In principle, this approach is similar to the Iterative Local Refinement

technique described in Section 2.6. The key differences between the two techniques are: (a)

the wire length objective that is used for score calculation, (b) the technique employed to handle

placement blockages during critical path optimization, (c) handling of placement density during

critical path optimization. The key advantages of the incremental timing-driven placement

algorithm employed within ITOP are:

• It is efficient in nature and has the ability to simultaneously optimize a large number of

paths.

• It explicitly models and accounts for placement blockages during critical path optimiza-

tion.

To facilitate the subsequent discussion, we define:

• Critical module: A critical module is one that belongs to one or more critical paths

that are currently being refined. It includes the latches/flip-flops in the design, which

typically are the end-points of the path(s) being optimized.

• Path length: For a given path, the total net-length of the two-pin path-threading attrac-

tions forming the path.

To perform module movement, initially, a regular bin grid is constructed over the placement

region and the current or source bin for all the critical modules is determined. For each critical

module, eight movement scores are computed that correspond to tentatively moving the module

to its eight neighboring bins. To calculate the score, it is assumed that a module is moving from

www.manaraa.com

112

its current location in a source bin to the same relative location in the neighboring bin. Since

the primary objectives during placement are path length minimization via path smoothing,

the score for each move is solely based on the reduction in the weighted quadratic wire length

of all the nets connected to the module. If all eight scores are negative, the location of the

module remains unchanged. Otherwise, it is moved to the neighboring bin with the highest

positive score. During a single iteration of refinement, the above steps are performed on all

the critical modules. It is then repeated until there is no improvement in the total path length

over all the critical paths being optimized. Please note:

• During this stage of placement, the locations of the non-critical modules remain un-

changed. It is only the critical modules in the design that are moved.

• The stopping criterion during placement refinement is not based on the improvement in

the total wire length of the design. Rather, it is based on the improvement in the total

path length over all the critical paths being currently optimized. In fact, this stopping

criterion marginally increases the total wire length as a subset of the paths in the design

(consequently nets) are being optimized at the expense of others.

To ensure a tight coupling between placement and optimization, the critical modules are

not moved by a large distance during placement. This is ensured by setting a maximum

displacement constraint on the critical modules during each ITOP iteration. The maximum

displacement constraint is relaxed only when the critical modules need to cross over any of the

placement blockages in the image. This is explained in more detail in Section 6.4.3.

Placement refinement is followed by legalization, where the overlaps among the modules are

resolved and they are assigned to legal locations within the placement region. To ensure that

the critical modules are not perturbed by a large distance from their locations after refinement,

legalization follows a two-step approach:

1. In the first step, all the non-critical modules are ignored and the critical modules are

legalized in the presence of the placement blockages in the design. The critical modules

are then fixed and transformed into placement blockages.

www.manaraa.com

113

2. In the next step, the non-critical modules are legalized in the presence of all the placement

blockages in the design.

During critical path smoothing, a high attraction net-weight coupled with weighted quadratic

wire length minimization ensures that: (a) the lengths of the critical paths are effectively min-

imized, and (b) the critical modules are evenly distributed along their respective paths.

6.4.3 Tunneling to Handle Placement Blockages

To the best of our knowledge, none of the existing techniques on incremental timing-driven

placement explicitly model and account for placement blockages (fixed macros) during critical

path optimization. Previous techniques typically follow a two-step approach: (a) in the first

step they ignore the fixed macros and solve the mathematical program (quadratic or linear) to

optimize the critical paths, (b) in the second step they rely on a “timing-unaware” legalization

to resolve the overlaps between the fixed macros and critical modules. Modern mixed-size

designs contain thousands of fixed macros in the placement region, and ignoring them during

critical path optimization can lead to significant overlaps between the fixed macros and the

critical modules. As a result, the above two-step approach can potentially lead to severe

degradation in the design timing after legalization.

To consider fixed macros during critical path optimization, ITOP uses the concept of

tunneling while moving the critical modules during placement refinement. As mentioned before,

to perform critical module movement, the placement refinement technique uses a bin-based

approach and evaluates a movement score in a local neighborhood of bins. If a neighboring bin

overlaps with a fixed macro, then instead of landing on top of the fixed macro, it is assumed

that the critical module tunnels through the fixed macro in the general direction of the move.

As a result, to evaluate the movement score the closest bin(s) adjacent to the macro are

considered instead of the bin overlapping with the macro. During tunneling, the maximum

displacement constraint on the “tunneled module” is ignored. This ensures that additional

candidate locations can be considered for score evaluation.

The concept of tunneling is illustrated in Figure 6.6. In the figure, the dark shaded box

www.manaraa.com

114

Intended
Target Bin

Source
Bin

Actual Bins for
score evaluation and

component movement

Critical Path Placement
Blockage

Figure 6.6 Tunneling through fixed macros during critical path smoothing.

represents a fixed macro. There are four movable modules (lightly shaded boxes) forming

the critical path. One of these modules is placed on the right-hand side of the fixed macro

and needs to be moved across the macro to optimize the critical path. As shown in Figure

6.6, the lower-left neighboring bin of the module overlaps with the fixed macro. To consider

additional candidate locations, it is assumed that the module tunnels through the fixed macro

during placement refinement. As a result, the movement score is evaluated in the closest bins

adjacent to the left and bottom boundaries of the macro in the direction of the move. In all,

this module has three neighboring bins that overlap with the fixed macro. In Figure 6.6, the

bins with the hatched lines are the ones that are ultimately used for score evaluation to move

this module.

Please note, the maximum number of bins that need to be considered on account of tunnel-

ing is limited to twelve1, which is not much higher than the number of bins being considered

without tunneling (eight). Also, determining adjacent bins to a fixed macro from a blockage

1This scenario occurs when a movable module is surrounded by fixed macros on all sides.

www.manaraa.com

115

map is quite efficient. Hence, on the whole, tunneling has negligible impact on the runtime of

the algorithm.

Tunneling through fixed macros during critical path smoothing has two key advantages:

• Tunneling ensures that there are no overlaps between the critical modules and fixed

macros at the end of the placement refinement stage. Since the first step of legalization

considers only the critical modules, they are not perturbed by a large distance during

legalization. This preserves the timing characteristics of the design as obtained after the

placement refinement stage.

• In addition, it is quite possible for greedy local search techniques to get stuck in a local

minima because the critical modules fall into “alleys” between the large fixed macros.

Tunneling ensures that such a case does not happen. Ignoring the maximum displacement

constraint for the “tunneled modules” enables the placement refinement technique to

further optimize the critical paths.

Experimental results in Section 6.9 on a set of industrial designs show that tunneling is an

essential component for the timing convergence of the incremental flow.

6.5 Congestion Mitigation and Wire Length Recovery

During critical path smoothing, the objective function for module movement considers only

the weighted quadratic wire length and ignores placement density or placement congestion

constraints. As a result, movement of the critical modules can greatly increase the placement

congestion in certain parts of the placement region. The impact of increasing the placement

congestion is two-fold: (a) the subsequent timing optimization step might not have enough

space to perform buffer insertion or gate sizing, which in turn limits its performance and

can lead to degraded quality of results, (b) a large number of pins being present in a local

region can also cause severe routing congestion. Therefore, to alleviate placement congestion,

a congestion mitigation step is performed after periodic intervals in the iterative flow. This

interval is determined by the variable itop transition iteration in Algorithm 6.1.

www.manaraa.com

116

The goal of the congestion mitigation step is to maintain the density profile of the incoming

placement to ITOP. The intuition being that preserving the incoming placement distribution

will yield a final placement that has the same degree of routability as the incoming place-

ment. In addition, there will be a reasonable amount of free-space for the timing optimization

transforms. To prevent excessive spreading of the modules and have an accurate view of the

local placement distribution, congestion mitigation attempts to satisfy a “bin density target”

as opposed to a global “density target” for the entire design. During congestion mitigation,

the non-critical modules are locally perturbed to satisfy the bin density target constraints that

are determined from the incoming placement.

To determine the bin density target, an M × N bin-grid, (B) is initially imposed over

the placement region. The density of each bin in B is then calculated from the incoming

placement. The density of a bin is defined as the ratio of the total movable module area to the

total free-space within the bin. The density target for each bin is then a function of the bin

density and the global density target for the design. If,

• GDT : The global density target for the design.

• db: Incoming density of bin b in B.

• DTb: Density target for bin b.

• δ: Overfill factor (a fixed, additional density allowed within bins for which db ≤ GDT).

• dmax: Maximum incoming bin density above which no overfill is allowed.

Then, the bin density target is given by the following piecewise linear function which is graph-

ically shown in Figure 6.7.

DTb =



























(1 + δ)GDT db ≤ GDT

(1−
δGDT

dmax −GDT

)db +
δGDT dmax

dmax −GDT

GDT < db < dmax

db db ≥ dmax

The intuition behind using the piecewise linear function for calculating the bin density target

is as follows:

www.manaraa.com

117

DTG)1(δ+

DTG

maxd

bd

bDT

maxd

DTG)1(δ+

DTG

maxd

bdbd

bDTbDT

maxd

Figure 6.7 Bin density target (DTb) during Congestion Mitigation.

• For all bins with an incoming density below a maximum density threshold (dmax), the

bin density target is set to be higher than the incoming bin density. This allows for the

bins to get marginally overfilled during ITOP. This in turn aids in the timing convergence

and runtime of the flow as the non-critical modules do not have to be moved during each

ITOP iteration to satisfy the bin density targets.

• Bins that have an incoming density equal and above dmax are highly congested to start

with. Increasing the logic area in these bins might potentially impact the performance

of the timing optimization step and also cause congestion and routing issues. Hence, the

bin density target is set equal to the incoming bin density to prevent any overfilling of

these bins during ITOP.

• In addition, bins with db < dmax are further divided into two categories:

1. Those with db ≤ GDT . These bins happen to be quite sparse to begin with. Hence,

the amount of excess area added to these bins can be higher than the other bins in

the regular bin structure. As a result, these bins are allowed to get overfilled until

their final densities are a fixed value above the global density target.

www.manaraa.com

118

2. Those with GDT < db < dmax. If the initial density of a bin happens to be greater

than the density target, then with an increase in the initial bin density, the amount

of additional area added to a bin is progressively decreased, until no overfilling is

allowed for bins with density greater than dmax.

To spread the modules from the over-congested bins, an enhanced version of the ILR

technique is used. The enhancements being: (a) rather than moving all the modules in the

design during each iteration of ILR, a bin-blocking mechanism is employed which prevents

module movement from any bin with a density less than its bin density target, (b) the modules

in an over-congested bin are sorted by their movement scores and are moved out of the bin in

the decreasing order of their benefit for the move.

In addition to increasing the placement congestion, movement of the critical modules can

also increase the total wire length of the design. The reason being, during each iteration of

placement, only a small number of critical nets are being optimized at the expense of all the

non-critical nets in the design. As a result, the increase in the wire length of the non-critical

nets can be much larger than the decrease in the wire length of the critical nets. Hence, after

each congestion mitigation step, a detailed placement step is performed to recover placement

wire length. To perform detailed placement, this step uses a variety of techniques like module

swapping, flipping, etc., in the spirit of the techniques described in [48].

6.6 Incremental Timing Optimization

An important component in the ITOP flow is the incremental timing optimization step that

is performed during each iteration. Once placement has optimized a subset of the negative

paths in the design (critical paths for the current iteration), a timing analysis followed by

incremental optimization is performed to further improve the design timing. Since buffering

and gate sizing are the most common and powerful optimizations during the early stages of

physical synthesis, the incremental optimization step employs these transforms to improve

design timing. Please note, other optimization transforms, such as multi-threshold vt tuning,

wire sizing, layer assignment, etc., can also be easily embedded within the ITOP flow if required.

www.manaraa.com

119

Since the goal of ITOP is to gradually improve design timing, only the top-most critical paths

are considered for buffering and gate sizing during each iteration. To obtain high quality of

results during optimization, the state-of-the art buffering and resizing algorithms outlined in [3]

are used. In addition, to avoid any inaccuracy and the resulting degradation in the quality of

results, all the transforms rely on accurate timing from an industrial static timing engine to

perform optimization.

6.7 Slack Histogram Compression

Periodically, after a certain number of iterations in the ITOP flow (given by the variable

itop transition iteration in Algorithm 6.1), a slack histogram compression is performed on the

entire design. Slack histogram compression comprises of buffering and repowering a larger set

of paths in the design. This is done for the following two reasons:

• Movement of the modules on the critical paths over multiple iterations can accumulate

and impact the timing on a large set of the off-critical paths. Periodically increasing the

scope of the optimization can recover any degradation in the timing on the off-critical

paths. This in turn can help the critical path optimization steps of ITOP to find the

correct set of critical paths to be optimized.

• Since timing optimization is performed on a larger set of paths, periodic slack histogram

compression also improves the efficiency of the overall algorithm.

6.8 The ITOP Algorithm

Since ITOP has been primarily developed to improve the design timing on a global scale,

a large number of paths are considered for simultaneous placement optimization during the

early stages of the iterative flow. The scope of timing improvement is gradually reduced by

progressively decreasing the number of paths being optimized during placement. This is shown

in Figure 6.8, where the change in the number of paths being optimized during placement is

represented by the change in the size of the non-shaded boxes. At each transition point in the

www.manaraa.com

120

iterative flow, congestion mitigation, wire length recovery and slack histogram compression

are performed. This is shown by the shaded box in Figure 6.8. Please note, in between each

transition point, the number of paths being optimized during placement is kept constant.

Ite
ra

tio
n

Critical Path Smoothing (N Paths)
Incremental Timing Optimization

Critical Path Smoothing (N -
β

Paths)
Incremental Timing Optimization

Critical Path Smoothing (N - 2
β

Paths)
Incremental Timing Optimization

Number of Paths

Congestion Mitigation
Wire Length Recovery
Slack Histogram Compression

Ite
ra

tio
n

Critical Path Smoothing (N Paths)
Incremental Timing Optimization

Critical Path Smoothing (N -
β

Paths)
Incremental Timing Optimization

Critical Path Smoothing (N - 2
β

Paths)
Incremental Timing Optimization

Number of Paths

Congestion Mitigation
Wire Length Recovery
Slack Histogram Compression

Figure 6.8 Scheduling the number of paths to be optimized during ITOP.

Finally, Algorithm 6.1 gives the overall ITOP algorithm, incorporating the techniques de-

scribed in Sections 6.4 – 6.7. From Algorithm 6.1 and the discussion in the previous sections,

the values for the key ITOP parameters used in practice are:

• Overfill factor (δ): 0.25 (Allow 25% overfilling of bins below the global density target).

• Maximum bin density upto which overfill is allowed (dmax): 0.90.

• Maximum displacement for critical modules (D1): 1% of the chip diagonal.

• Maximum displacement for non-critical modules (D2): 5× circuit row height.

• Transition iteration (itop transition iteration): 20.

www.manaraa.com

121

Algorithm 6.1 The ITOP algorithm

1: Phase 0: Initial Setup

2: D1← max displacement for critical modules

3: D2← max displacement for non critical modules

4: impose an M ×N bin-grid (B) over the placement region

5: determine the placement density (db) for each bin b ∈ B

6: determine the density target (DTb) for each bin b ∈ B

7: end

8: iteration← 1

9: repeat

10: Phase 1: Critical Path Smoothing

11: perform static timing analysis

12: identify the critical paths

13: perform slack-based critical path threading

14: repeat

15: move critical modules to minimize critical path lengths

(subject to displacement constraint D1)

16: until (no improvement in total path length over all critical paths)

17: legalize and fix the critical modules

18: legalize the non-critical modules

19: end

20: Phase 2: Congestion Mitigation and Wire Length Recovery

21: if (iteration % itop transition iteration == 0) then

22: move non-critical modules to satisfy DTb for each bin b ∈ B

(subject to displacement constraint D2)

23: legalize the non-critical modules

24: perform detailed placement to recover wire length

(subject to displacement constraint D2)

25: end if

26: end

27: Phase 3: Incremental Timing Optimization

28: perform static timing analysis

29: identify the critical paths

30: perform quick buffer insertion and gate sizing on the critical paths

31: end

32: Phase 4: Slack Histogram Compression

33: if (iteration % itop transition iteration == 0) then

34: perform static timing analysis

35: perform slack histogram compression

36: end if

37: end

38: iteration← iteration + 1

39: until (no timing improvement)

www.manaraa.com

122

6.9 Experimental Results

The ITOP algorithm is implemented within the PDS industrial physical synthesis frame-

work [3, 64]. PDS is a state-of-the-art physical synthesis framework that has been used in

the design of many high performance integrated circuits. To demonstrate the effectiveness

of ITOP, this section presents experimental results on a set of high performance industrial

designs in the 65nm and 45nm process technology nodes. The design statistics in terms of the

number of modules and the number of nets are given in Table 6.2. The runtimes reported in

this section are on a Intel Xeon CPU running at 2.93GHz. Finally, all the timing numbers are

generated on legalized placements using an industrial static timing engine (EinsTimer).

Table 6.2 Statistics for a set of high performance industrial designs to test

the ITOP algorithm.

Design Modules Nets

ckt 1 77K 61K

ckt 2 102K 104K

ckt 3 125K 124K

ckt 4 143K 145K

ckt 5 171K 177K

ckt 6 434K 441K

ckt 7 451K 465K

ckt 8 476K 491K

ckt 9 554K 562K

ckt 10 951K 961K

ckt 11 1034K 1056K

The results presented in this section are divided into two parts: (a) the first part demon-

strates the timing impact of the key components within ITOP, (b) the second part compares

the results of ITOP with two representative flows embedded within the PDS framework.

6.9.1 Effect of Placement During ITOP

Figure 6.9 and Figure 6.10 show the progression of the worst slack and Figure of Merit

(FOM) respectively during ITOP. In Figure 6.10 the FOM is a weighted sum of all the negative

www.manaraa.com

123

path slacks in the design, and is a measure of the overall slack histogram. In both the figures,

the solid (red) line represents the case when both placement and timing optimization are

run during each iteration of ITOP (default flow). The dotted (blue) line represents the case

when only timing optimization is run during each iteration. From Figures 6.9 and 6.10, it

can be seen that the timing improvement obtained during ITOP is not because of solely

running multiple iterations of timing optimization on the design. To improve design timing,

incremental placement is an essential component within ITOP, and is required to prevent

timing optimization from getting stuck in a local minima.

-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

 0 20 40 60 80 100 120

W
or

st
 S

la
ck

 (
ns

)

Iteration

Worst Slack vs. Iteration

Placement and Optimization (ITOP)
Only Optimization

Figure 6.9 Effect of incremental placement during ITOP. Worst slack pro-

gression during the iterative flow. The red (solid) line depicts

the default ITOP flow. The blue (dotted) line depicts the case

when placement is skipped during each iteration.

6.9.2 Effect of Tunneling During Critical Path Smoothing

Table 6.3 shows the impact of tunneling on the design timing at the end of ITOP. The

table compares two experiments: (a) No Tunneling: ITOP with no tunneling during critical

path smoothing, (b) With Tunneling: ITOP with tunneling during critical path smoothing

www.manaraa.com

124

-14000

-13000

-12000

-11000

-10000

-9000

-8000

-7000

-6000

-5000

 0 20 40 60 80 100 120

F
ig

ur
e

of
 M

er
it

(n
s)

Iteration

Figure of Merit vs. Iteration

Placement and Optimization (ITOP)
Only Optimization

Figure 6.10 Effect of incremental placement during ITOP. Figure of Merit

progression during the iterative flow. The lines correspond to

the same cases as Figure 6.9.

(default flow). From Table 6.3, it can be see that tunneling aids in significantly improving the

worst slack and Figure of Merit of the design. In particular, from columns four and seven,

tunneling obtains more than 35% improvement in the worst slack and upto 20% improvement

in the Figure of Merit of the design respectively.

Table 6.3 Effect of tunneling during critical path smoothing. Design timing

(worst slack and timing figure of merit) at the end of ITOP.

Worst Slack (ns) Figure of Merit (ns)

Design No With No With

Tunneling
%Improv

Tunneling
%Improv

ckt 1 -1.78 -1.22 31.46 -1507 -1337 11.28

ckt 3 -0.48 -0.34 29.17 -963 -865 10.18

ckt 5 -0.34 -0.22 35.29 -456 -365 19.96

www.manaraa.com

125

6.9.3 Effect of Periodic Slack Histogram Compression

Table 6.4 shows the impact of periodically running optimizations targeted toward slack

histogram compression at each transition point of the ITOP flow. The table compares two

experiments: (a) No Compression: ITOP flow with no periodic slack histogram compression,

(b) With Compression: ITOP flow with slack histogram compression at each transition point

(default flow). Since compression targets the overall slack histogram and not particularly the

worst slack path in the design, Table 6.4 shows the Figure of Merit and the total number

of negative paths in the design at the end of ITOP. From columns four and seven of Table

6.4, running periodic slack histogram compression obtains more than 77% improvement in the

Figure of Merit and more than 54% improvement in the number of negative paths at the end

of ITOP. In Table 6.4, the designs are listed in ascending order of the design size (number

of modules in the design). From column four, it can be seen that the improvement in design

timing due to slack histogram compression increases dramatically with the design size.

Table 6.4 Effect of periodic slack histogram compression during the itera-

tive flow. Design timing (timing figure of merit and number of

negative paths) at the end of ITOP.

Figure of Merit (ns) Number of Negative Paths

Design No With No With

Compression
%Improv

Compression
%Improv

ckt 3 -912 -865 5.15 4426 3395 23.29

ckt 5 -549 -365 33.52 7125 5665 20.49

ckt 8 -164 -37 77.44 1652 751 54.54

6.9.4 Physical Synthesis Flows for Comparison of Results

To test its effectiveness, ITOP is compared with two representative flows that are shown

in Figure 6.11. These are:

• NO-TDP: Physical synthesis flow that only performs a single wire length driven global

placement followed by coarse timing optimization and fine timing optimization.

www.manaraa.com

126

• TDP: Physical synthesis flow that augments the NO-TDP flow with a net-weight driven

timing-driven placement step. In this flow, timing-driven placement is performed between

the coarse and fine timing optimization steps. Please note, the TDP flow happens to be

the representative flow for a majority of the industrial physical synthesis frameworks.

To perform global placement, all the flows use the RQL global placement algorithm. In

addition, to perform net-weighting, the TDP flow uses the sensitivity guided net-weighting

scheme [54].

Coarse Timing Optimization

Routing Congestion Analysis

Fine Timing Optimization

• no net-weights
• minimize wire length

Initial Placement

(a)

Initial

• weight nets on critical paths

Net-weighting

• minimize weighted wire length
• global placement on entire netlist

Timing-driven Placement

Coarse Timing Optimization

Fine Timing Optimization

• no net-weights
• minimize wire length

Initial Placement

(b)

Routing Congestion Analysis

Coarse Timing Optimization

Routing Congestion Analysis

• no net-weights
• minimize wire length

Initial Placement

Integrated Timing
Optimization and Placement

(ITOP)

(c)

Coarse Timing Optimization

Routing Congestion Analysis

Fine Timing Optimization

• no net-weights
• minimize wire length

Initial Placement

(a)

Coarse Timing Optimization

Routing Congestion Analysis

Fine Timing Optimization

• no net-weights
• minimize wire length

Initial Placement

(a)

Initial

• weight nets on critical paths

Net-weighting

• minimize weighted wire length
• global placement on entire netlist

Timing-driven Placement

Coarse Timing Optimization

Fine Timing Optimization

• no net-weights
• minimize wire length

Initial Placement

(b)

Routing Congestion Analysis

• weight nets on critical paths

Net-weighting

• weight nets on critical paths

Net-weighting

• minimize weighted wire length
• global placement on entire netlist

Timing-driven Placement

• minimize weighted wire length
• global placement on entire netlist

Timing-driven Placement

Coarse Timing Optimization

Fine Timing Optimization

• no net-weights
• minimize wire length

Initial Placement

(b)

Routing Congestion Analysis

Coarse Timing Optimization

Routing Congestion Analysis

• no net-weights
• minimize wire length

Initial Placement

Integrated Timing
Optimization and Placement

(ITOP)

(c)

Coarse Timing Optimization

Routing Congestion Analysis

• no net-weights
• minimize wire length

Initial Placement

Integrated Timing
Optimization and Placement

(ITOP)

(c)

Figure 6.11 Physical synthesis flows for comparison of results. (a)

NO-TDP: No timing-driven placement (b) TDP: Net-weight-

ing and global timing-driven placement (c) ITOP: Integrated

Timing Optimization and Placement. (Note: Although not

depicted, detailed placement is performed within the fine tim-

ing optimization stage for the NO-TDP and TDP flows).

www.manaraa.com

127

Before presenting the comparison results, the following observations are made regarding the

NO-TDP and TDP flows. These observations are also validated by the experimental results

presented later.

• Since the NO-TDP flow performs only a single wire length driven global placement (with-

out any net-weighting), it should have better wire length and potentially better routing

congestion as compared to the TDP flow.

• On the other hand, the TDP flow should have better overall design timing as compared

to the NO-TDP flow since it includes an additional net-weight driven timing-driven

placement step.

In this respect, the goal of ITOP is to obtain wire length and routing congestion numbers that

are at least comparable to the NO-TDP flow and design timing that is at least comparable to

the TDP flow.

6.9.5 Results on High Performance Industrial Designs

This section presents the comparison results between the three flows shown in Figure 6.11.

The metrics for comparison are: (a) the design timing in terms of the worst slack, Figure of

Merit and the number of negative paths, (b) the Steiner wire length, which is a more accurate

estimation of the final routed wire length as compared to the half-perimeter wire length, (c) the

global routing congestion, and (d) the overall runtime of the flows. In all the tables presented

in this section, the values given along the Initial column are the numbers at the end of the

coarse timing optimization stage in Figure 6.11.

6.9.5.1 Design Timing

Table 6.5, Table 6.6 and Table 6.7 compares the worst slack, Figure of Merit and number

of negative paths at the end of the three flows. In the three tables, for each design, the

improvement obtained by the respective flows is evaluated with respect to the “initial” timing

obtained at the end of the coarse timing optimization stage. In addition, for each design, the

numbers in bold represent the best timing result among the three flows.

www.manaraa.com

128

From column eight of Tables 6.5 – 6.7, it can be seen that, on average, ITOP obtains

the best timing results among the three flows. In particular, in terms of the worst

slack, from Table 6.5, ITOP obtains an average improvement of 45.62% and 35.14% above

the NO-TDP and TDP flows respectively. In terms of the Figure of Merit, from Table 6.6,

ITOP obtains an average improvement of 37.75% and 12.2% above the NO-TDP and TDP

flows respectively. From Table 6.7, on average, ITOP reduces the number of negative paths

by 35.45% and 15.59% over the NO-TDP and TDP flows respectively. Looking at individual

results, from Table 6.5, on nine out of the eleven designs, ITOP obtains the best result in terms

of the worst slack of the design. In fact, ITOP closes timing (obtains positive worst-slack) on

three of the designs. From Table 6.6, ITOP obtains the best timing Figure of Merit on seven

out of the eleven designs.

Table 6.5 Worst slack comparison between the No timing-driven placement

(NO-TDP), Net-weighted timing-driven placement (TDP) and

Integrated Timing Optimization and Placement (ITOP) flows.

Worst Slack (ns)
Design

Initial NO-TDP %Improv TDP %Improv ITOP %Improv

ckt 1 -1.89 -1.82 3.54 -3.88 -105.39 -1.22 35.48

ckt 2 -0.24 -0.12 50.00 -0.20 19.26 0.03 111.89

ckt 3 -1.13 -1.01 10.83 -1.00 11.54 -0.34 69.57

ckt 4 -0.22 -0.15 28.37 -0.01 96.74 0.04 116.28

ckt 5 -0.71 -0.59 17.21 -0.27 62.20 -0.22 69.53

ckt 6 -1.32 -1.05 20.18 -0.69 47.95 -0.48 63.58

ckt 7 -1.33 -1.14 14.58 -0.63 52.52 -1.22 8.64

ckt 8 -1.14 -1.03 9.80 -0.66 42.52 -0.15 87.14

ckt 9 -0.43 -0.22 47.54 -0.21 51.29 0.07 116.86

ckt 10 -1.55 -1.24 19.90 -1.16 25.11 -0.85 45.59

ckt 11 -3.54 -3.51 0.96 -2.33 34.40 -3.54 0.11

Average 20.26 30.74 65.88

6.9.5.2 Design Wire Length

Table 6.8 compares the total Steiner wire length of the designs at the end of the three

flows. From Table 6.8 it can be seen that on average, both the NO-TDP and ITOP flows

www.manaraa.com

129

Table 6.6 Timing Figure of Merit comparison between the No timing–

driven placement (NO-TDP), Net-weighted timing-driven place-

ment (TDP) and Integrated Timing Optimization and Place-

ment (ITOP) flows.

Figure of Merit (ns)
Design

Initial NO-TDP %Improv TDP %Improv ITOP %Improv

ckt 1 -1699 -1535 9.65 -1519 10.62 -1338 21.28

ckt 2 -103 -22 79.02 -29 71.50 -2 98.06

ckt 3 -1371 -1378 -0.48 -1444 -5.36 -865 36.88

ckt 4 -67 -36 45.55 -7 89.35 0 99.49

ckt 5 -1537 -1052 31.57 -200 86.99 -365 76.24

ckt 6 -13865 -11210 19.15 -5391 61.12 -5331 61.55

ckt 7 -1860 -1276 31.37 -395 78.75 -441 76.28

ckt 8 -1595 -746 53.21 -87 94.58 -37 97.68

ckt 9 -52 -49 6.05 -38 26.33 -1 97.60

ckt 10 -100277 -74968 25.24 -48093 52.04 -54479 45.67

ckt 11 -11332 -10082 11.03 -8337 26.43 -9535 15.86

Average 28.30 53.85 66.05

Table 6.7 Number of negative paths at the end of the No timing-driven

placement (NO-TDP), Net-weighted timing-driven placement

(TDP) and Integrated Timing Optimization and Placement

(ITOP) flows.

Number of Negative Paths
Design

Initial NO-TDP %Improv TDP %Improv ITOP %Improv

ckt 1 2554 2002 21.61 2218 13.16 1928 24.51

ckt 2 1159 274 76.36 443 61.78 128 88.96

ckt 3 3525 3490 0.99 3306 6.21 3395 3.69

ckt 4 421 336 20.19 208 50.59 59 85.99

ckt 5 10180 8688 14.66 3061 69.93 5665 44.35

ckt 6 39853 37710 5.38 28705 27.97 33662 15.53

ckt 7 7090 5287 25.43 3033 57.22 3328 53.06

ckt 8 6612 3695 44.12 1232 81.37 751 88.64

ckt 9 371 757 -104.04 663 -78.71 133 64.15

ckt 10 148648 148426 0.15 121329 18.38 147215 0.96

ckt 11 30106 33810 -12.30 29178 3.08 26299 12.65

Average 8.41 28.27 43.86

www.manaraa.com

130

improve the total wire length as compared to the initial wire length obtained at the end of the

coarse timing optimization step. On the other hand, the TDP flow increases the total wire

length by about 3% on average. In fact, for some cases (e.g., ckt 1 and ckt 7) the increase in

the total wire length is in excess of 5%. From Table 6.8, it can be seen, that ITOP obtains

an average wire length improvement of 5% as compared to the TDP flow, and is

comparable in wire length to the NO-TDP flow.

Table 6.8 Total wire length comparison between the No timing-driven

placement (NO-TDP), Net-weighted timing-driven placement

(TDP) and Integrated Timing Optimization and Placement

(ITOP) flows.

Steiner Wire Length (×e6)
Design

Initial NO-TDP NO-TDP/Init TDP TDP/Init ITOP ITOP/Init

ckt 1 94.63 94.12 0.99 101.75 1.08 95.01 1.00

ckt 2 16.59 15.63 0.94 17.48 1.05 15.86 0.96

ckt 3 26.87 26.18 0.97 26.19 0.97 26.31 0.98

ckt 4 28.21 27.03 0.96 27.94 0.99 27.45 0.97

ckt 5 43.84 43.39 0.99 45.71 1.04 44.23 1.01

ckt 6 176.47 174.11 0.99 183.97 1.04 178.71 1.01

ckt 7 146.94 142.29 0.97 160.38 1.09 143.55 0.98

ckt 8 128.55 124.02 0.96 129.44 1.01 126.66 0.99

ckt 9 141.59 134.26 0.95 139.43 0.98 134.34 0.95

ckt 10 342.25 327.58 0.96 347.50 1.02 332.68 0.97

ckt 11 284.16 275.88 0.97 288.80 1.02 276.02 0.97

Average 0.97 1.03 0.98

6.9.5.3 Global Routing Congestion

Table 6.9 gives the routing congestion analysis results that are obtained by invoking an

industrial strength global router on the final placement solutions of the three flows. The

metric that is used to measure the congestion after global routing is the number of nets above

100% congestion. This is defined as the number of nets that are assigned to a global routing

edge which is using 100% or more of its routing resources. In practice, it is desirable to have

a low value for this metric to make the design more routable.

www.manaraa.com

131

From Table 6.9 it can be seen that the global routing congestion for the ITOP flow

is comparable to that of the NO-TDP flow. In fact, for most designs, ITOP preserves the

routability obtained at the end of the coarse optimization stage. This demonstrates the effec-

tiveness of the incremental path smoothing and congestion mitigation techniques in preserving

the original routability of the design.

Table 6.9 Global routing congestion analysis on the final placements

obtained from the No timing-driven placement (NO-TDP),

Net-weighted timing-driven placement (TDP) and Integrated

Timing Optimization and Placement (ITOP) flows.

Global Routing Congestion (#Nets ≥ 100%)
Design

Initial NO-TDP Inc. TDP Inc. ITOP Inc.

ckt 1 76 75 -1 75 -1 119 43

ckt 2 1915 1216 -699 3302 1387 1537 -378

ckt 3 241 259 18 301 60 583 342

ckt 4 20 57 37 298 278 153 133

ckt 5 1024 953 -71 1537 513 974 -50

ckt 6 864 864 0 884 20 864 0

ckt 7 8708 9319 611 56051 47343 9066 358

ckt 8 971 1211 240 2034 1063 1333 362

ckt 9 402 347 -55 407 5 638 236

ckt 10 1301 6098 4797 161229 159928 7436 6135

ckt 11 6850 5204 -1646 14752 7902 4982 -1868

Average 294 19863 483

Figure 6.12 graphically shows the global routing congestion for the three flows on the design

ckt 7. As seen from Figure 6.12, the TDP flow produces significant routing congestion, whereas

the NO-TDP and ITOP flows have much lower congestion. The high routing congestion for

the TDP flow can be attributed to the following reasons: (a) net-weighted global timing-driven

placement can significantly increase the total wire length of the design (in this case 9%, from

Table 6.8), which in turn increases the global routing resource demand, (b) net-weighting can

pack quite a few modules in a local region, leading to routing hot-spots. On the other hand,

the superior routing congestion for the ITOP flow can be attributed to the following reasons:

(a) ITOP does not perform a global timing-driven placement and relies on an incremental

www.manaraa.com

132

flow to achieve timing closure, (b) during the incremental flow it performs periodic congestion

mitigation and wire length recovery leading to improved total wire length and routability of

the final solution.

6.9.5.4 Runtime

Finally, Table 6.10 gives the runtimes of the three flows for all the designs. Since the NO-

TDP flow performs only fine timing optimization, its runtime is going to be significantly lower

than the other two flows across all the designs. Comparing the TDP and ITOP flows, it can

be seen that ITOP scales well with circuit size. This can be seen from columns three and

four of Table 6.10 where the runtime for ITOP is lower than that of TDP for the five largest

designs in the benchmark suite.

Table 6.10 Runtime comparison between the No timing-driven placement

(NO-TDP), Net-weighted timing-driven placement (TDP) and

Integrated Timing Optimization and Placement (ITOP) flows.

Runtime (sec)
Design

NO-TDP TDP ITOP

ckt 1 898 2118 2905

ckt 2 561 1194 827

ckt 3 581 887 1805

ckt 4 652 1339 2244

ckt 5 1062 1966 2576

ckt 6 3303 6304 6624

ckt 7 3284 8654 7397

ckt 8 2915 7375 7210

ckt 9 2825 9021 8059

ckt 10 8966 29638 23099

ckt 11 6278 16517 15427

6.10 Key Findings and Observations

Timing-driven placement is a critical step in the physical synthesis of nanometer-scale VLSI

designs. To improve the design timing on a global scale, net-weighting followed by a global

www.manaraa.com

133

(a) Num. Congested Nets: 9319

(b) Num. Congested Nets: 56051

(c) Num. Congested Nets: 9066

Figure 6.12 Final routing congestion. (a) No timing-driven placement flow

(NO-TDP) (b) Net-weighted timing-driven placement flow

(TDP) (c) Integrated Timing Optimization and Placement

(ITOP). (The regions colored pink and purple have more than

100% global routing resource usage).

www.manaraa.com

134

timing-driven placement happens to be the most popular approach. This chapter demonstrates

that such an approach can improve timing, but significantly degrade the wire length and

routability of the design. In addition, it empirically demonstrates that there needs to be a

tight coupling between timing optimization and placement, and that both these steps should

rely on accurate timing from a state-of-the-art static timing engine. This in turn highlights the

drawbacks of existing incremental placement approaches that use mathematical programming

techniques based on inaccurate delay models to perform timing-driven placement.

Alternately, an Integrated Timing Optimization and Placement (ITOP) approach has been

developed to achieve timing closure on nanometer-scale VLSI designs. ITOP uses an incremen-

tal approach with tight integration between placement and timing optimization to gradually

improve design timing without degrading the wire length and routability. In addition, ITOP

relies on accurate timing from a static timing engine to perform placement and optimization.

Experimental results on high performance industrial designs show that ITOP can significantly

improve design timing with negligible impact to the total wire length and routability of the

design.

www.manaraa.com

135

CHAPTER 7. GENERAL CONCLUSIONS

Placement is a fundamental and still highly relevant problem in VLSI CAD. The quality

of the placement significantly impacts the ability of a physical synthesis tool or designer to

achieve design closure. An industry-strength placement algorithm must be reasonably fast, yet

still obtain high-quality solutions.

In addition, placement can no longer be considered as an independent step in the design

of nanometer-scale integrated circuits. Due to the dominance of interconnect delay in the

nanometer regime, placement algorithms need to closely interact with timing optimization

transforms like buffer insertion, gate sizing, and logic re-synthesis to achieve timing closure.

This dissertation presents novel techniques that have been developed to address the key

challenges faced during nanometer-scale integrated circuit placement. The first part of this dis-

sertation presents efficient and high-quality techniques to perform force-directed global place-

ment and legalization on multi-million gate mixed-size circuits. The second part of the disser-

tation presents placement techniques that have been developed to address the issues of clock

power minimization and timing closure within a physical synthesis flow.

The key contributions of this work in the area of global placement and legalization are:

• An efficient Density Aware Module Spreading technique to spread the modules during the

early stages of global placement. This technique roughly maintains the relative ordering

of the modules as obtained by solving the quadratic program in both the horizontal and

vertical directions.

• An effective linearization technique called Force-vector Modulation that restructures the

placement at a global scale to minimize wire length without sacrificing the degree of

spreading.

www.manaraa.com

136

• An Iterative Local Refinement technique to reduce the wire length based on the half-

perimeter wire length measure. This technique is applied on a coarse global placement

and is highly effective in simultaneously reducing the wire length and spreading the

modules.

• A multilevel placement framework using circuit clustering, that incorporates the above

techniques during global placement to handle multi-million gate mixed-size circuits.

• An Iterative Clustering Algorithm to perform macro-block legalization, while guarantee-

ing minimum perturbation of the macros from their global placement locations.

• An efficient Slice-based Cell Movement technique to perform standard-cell legalization in

the presence of placement blockages.

To minimize clock power in high performance integrated circuits several techniques have

been developed and incorporated within a force-directed global placement framework. This

yields a Clock Constraint Aware Timing-driven Placement (CCATP) algorithm. The CCATP

algorithm simultaneously optimizes the timing by minimizing the weighted total wire length,

and clock power by optimizing the placement of the clocked elements (latches, flip-flops etc.,)

within a circuit.

Finally, to achieve timing closure on nanometer-scale VLSI designs, an Integrated Timing

Optimization and Placement (ITOP) algorithm is presented. ITOP uses an incremental ap-

proach with tight integration between placement and timing optimization to gradually improve

design timing without degrading the wire length and routability. In addition, ITOP relies on

accurate timing from a static timing engine to perform placement and optimization.

The effectiveness of the techniques is demonstrated by: (a) comparing them with existing

approaches to integrated circuit placement, and (b) embedding them within an industrial

physical synthesis tool that is used in the design of high performance integrated circuits in the

65nm and 45nm process technology nodes.

www.manaraa.com

137

BIBLIOGRAPHY

[1] S. N. Adya, S. Chaturvedi, J. A. Roy, D. Papa, and I. L. Markov. Unification of par-

titioning, floorplanning and placement. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design, pages 550–557, 2004.

[2] A. R. Agnihotri, S. Ono, C. Li, M. C. Yildiz, A. Khatkhate C.-K. Koh, and P. H. Mad-

den. Mixed block placement via fractional cut recursive bisection. IEEE Transactions on

Computer-Aided Design, 24(5):748–761, May 2005.

[3] C. J. Alpert, S. Karandikar, Z. Li, G.-J. Nam, S. T. Quay, H. Ren, C. N. Sze, P. G.

Villarrubia, and M. Yildiz. Techniques for fast physical synthesis. Proceedings of IEEE,

95(3):573–599, March 2007.

[4] U. Brenner and M. Struzyna. Faster and better global placement by a new transportation

algorithm. In Proceedings of the ACM/IEEE Design Automation Conference, pages 591–

596, 2005.

[5] U. Brenner and J. Vygen. Legalizing a placement with minimum total movement. IEEE

Transactions on Computer-Aided Design, 23(12):1597 – 1613, December 2004.

[6] A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can recursive bisection produce routable

placements. In Proceedings of the ACM/IEEE Design Automation Conference, pages

477–482, 2000.

[7] T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel optimization for large-scale circuit

placement. In Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pages 171–176, 2000.

www.manaraa.com

138

[8] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit

placement. In Proceedings of the ACM International Symposium on Physical Design, pages

185–192, 2005.

[9] T. F. Chan, J. Cong, J. R. Shinnerl, K. Sze, and M. Xie. mPL6: Enhanced multilevel

mixed-size placement. In Proceedings of the ACM International Symposium on Physical

Design, pages 212–214, 2006.

[10] C. C. Chang, J. Cong, and X. Yuan. Multi-level placement for large-scale mixed-size IC

designs. In Proceedings of the Asia and South Pacific Design Automation Conference,

pages 325–330, 2003.

[11] T.-C. Chen, T.-C. Hsu, Z.-W. Jiang, and Y.-W. Chang. NTUplace: A ratio partitioning

based placement algorithm for large-scale mixed-size designs. In Proceedings of the ACM

International Symposium on Physical Design, pages 236–238, 2005.

[12] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. A high-quality mixed-

size analytical placer considering preplaced blocks and density constraints. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design, pages 187 – 192,

2006.

[13] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang. NTUplace3: An

analytical placer for large-scale mixed-size designs with preplaced blocks and density con-

straints. IEEE Transactions on Computer-Aided Design, 27(7):1228–1240, July 2008.

[14] W. Chen, C.-T. Hsieh, and M. Pedram. Simultaneous gate sizing and placement. IEEE

Transactions on Computer-Aided Design, 19(2):206–214, February 2000.

[15] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang. Power-aware placement. In

Proceedings of the ACM/IEEE Design Automation Conference, pages 795–800, 2005.

[16] W. Choi and K. Bazargan. Incremental placement for timing optimization. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design, pages 463–466,

2003.

www.manaraa.com

139

[17] A. Chowdhary, K. Rajagopal, S. Venkatesan, T. Cao, V. Tiourin, Y. Perasuram, and

B. Halpin. How accurately can we model timing in a placement engine? In Proceedings

of the ACM/IEEE Design Automation Conference, pages 801–806, 2005.

[18] J. Cong and M. Xie. A robust detailed placement for mixed-size ic designs. In Proceedings

of the Asia and South Pacific Design Automation Conference, pages 188–194, 2006.

[19] J. Cong and M. Xie. A robust mixed-size legalization and detailed placement algorithm.

IEEE Transactions on Computer-Aided Design, 27(8):1349–1362, August 2008.

[20] David E. Duarte, N. Vijaykrishnan, and Mary Jane Irwin. A clock power model to

evaluate impact of architectural and technology optimizations. IEEE Transactions on

VLSI Systems, 10:844–855, 2002.

[21] H. Eisenmann and F. Johannes. Generic global placement and floorplanning. In Proceed-

ings of the ACM/IEEE Design Automation Conference, pages 269–274, 1998.

[22] Michael K. Gowan, Larry L. Biro, and Daniel B. Jackson. Power considerations in the

design of the alpha 21264 microprocessor. In Proceedings of the IEEE/ACM Design Au-

tomation Conference, pages 726–731, 1998.

[23] K. M. Hall. An r-dimensional quadratic placement algorithm. Management Science,

17:219–229, 1970.

[24] B. Halpin, C. R. Chen, and N. Sehgal. Timing driven placement using physical net

constraints. In Proceedings of the ACM/IEEE Design Automation Conference, pages

780–783, 2001.

[25] D. Hill. Method and system for high speed detailed placement of cells within an integrated

circuit design. US Patent 6370673, April 2002.

[26] W. Hou, X. Hong, W. Wu, and Y. Cai. A path-based timing-driven quadratic placement

algorithm. In Proceedings of the Asia and South Pacific Design Automation Conference,

pages 745–748, 2003.

www.manaraa.com

140

[27] B. Hu and M. Marek-Sadowska. Fine granularity clustering for large scale placement

problems. In Proceedings of the ACM International Symposium on Physical Design, pages

67–74, 2003.

[28] B. Hu and M. Marek-Sadowska. Multilevel fixed-point-addition-based VLSI placement.

IEEE Transactions on Computer-Aided Design, 24(8):1188–1203, August 2005.

[29] S. Hur, T. Cao, K. Rajagopal, Y. Perasuram, A. Chowdhary, V. Tiourin, and B. Halpin.

Force directed Mongrel with physical net constraints. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 214–219, 2003.

[30] S.-W. Hur and J. Lillis. Mongrel: Hybrid techniques for standard cell placement. In Pro-

ceedings of the IEEE/ACM International Conference on Computer-Aided Design, pages

165–170, 2000.

[31] M. A. B. Jackson and E. S. Kuh. Performance-driven placement of cell based ics. In

Proceedings of the ACM/IEEE Design Automation Conference, pages 370–375, 1989.

[32] A. B. Kahng, S. Reda, and Q. Wang. Architecture and details of a high quality, large-

scale analytical placer. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 890–897, 2005.

[33] A. B. Kahng and Q. Wang. An analytical placer for mixed-size placement and timing-

driven placement. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 565–572, 2004.

[34] A. B. Kahng and Q. Wang. Implementation and extensibility of an analytic placer. IEEE

Transactions on Computer-Aided Design, 24(5):734–747, May 2005.

[35] A. Kennings and K. P. Vorwerk. Force-directed methods for generic placement. IEEE

Transactions on Computer-Aided Design, 25(10):2076–2087, October 2006.

www.manaraa.com

141

[36] J. Kleinhans, G. Sigl, F. Johannes, and K. Antreich. GORDIAN: VLSI placement by

quadratic programming and slicing optimization. IEEE Transactions on Computer-Aided

Design, 10(3):356–365, March 1991.

[37] T. Kong. A novel net weighting algorithm for timing-driven placement. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design, pages 172–176,

2002.

[38] Z. M. Kurzum et al. Method for legalizing the placement of cells in an integrated circuit

layout. US Patent 7089521, August 2006.

[39] Y. Lu, C. N. Sze, X. Hong, Q. Zhou, Y. Cai, L. Huang, and J. Hu. Register placement for

low power clock network. In Proceedings of the Asia and South Pacific Design Automation

Conference, pages 588–593, 2005.

[40] T. Luo, D. Newmark, and D. Z. Pan. A new LP based incremental timing driven place-

ment for high performance designs. In Proceedings of the ACM/IEEE Design Automation

Conference, pages 1115–1120, 2006.

[41] M. D. Moffitt, D. A. Papa, Z. Li, and C. J. Alpert. Path smoothing via discrete opti-

mization. In Proceedings of the ACM/IEEE Design Automation Conference, pages 8–13,

2008.

[42] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. VLSI module placement based on

rectangle-packing by the sequence pair. IEEE Transactions on Computer-Aided Design,

15(12):1518–1524, December 1996.

[43] G.-J. Nam. ISPD 2006 placement contest: Benchmark suite and results. In Proceedings

of the ACM International Symposium on Physical Design, pages 167–167, 2006.

[44] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz. The ISPD2005 place-

ment contest and benchmark suite. In Proceedings of the ACM International Symposium

on Physical Design, pages 216–220, 2005.

www.manaraa.com

142

[45] G.-J. Nam, S. Reda, C. J. Alpert, P. G. Villarrubia, and A. B. Kahng. A fast hierar-

chical quadratic placement algorithm. IEEE Transactions on Computer-Aided Design,

25(4):678–691, April 2006.

[46] Sani Nassif. Delay variability: Sources, impacts and trends. In IEEE International Solid-

State Circuits Conference, pages 368–369, 2000.

[47] W. Naylor et al. Non-linear optimization system and method for wire length and delay

optimization for an automatic electric circuit placer. US Patent 6301693, October 2001.

[48] M. Pan, N. Viswanathan, and C. Chu. An efficient and effective detailed placement

algorithm. In Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design, pages 48–55, 2005.

[49] D. A. Papa, T. Luo, M. D. Moffitt, C. N. Sze, Z. Li, G.-J. Nam, C. J. Alpert, and

I. L. Markov. RUMBLE: An incremental timing-driven physical-synthesis optimization

algorithm. IEEE Transactions on Computer-Aided Design, 27(12):2156–2168, December

2008.

[50] Ruchir Puri, Leon Stok, and Subhrajit Bhattacharya. Keeping hot chips cool. In Proceed-

ings of the IEEE/ACM Design Automation Conference, pages 285–288, 2005.

[51] K. Rajagopal, T. Shaked, Y. Perasuram, T. Cao, A. Chowdhary, and B. Halpin. Timing

driven force directed placement with physical net constraints. In Proceedings of the ACM

International Symposium on Physical Design, pages 60–66, 2003.

[52] H. Ren, D. Z. Pan, C. J. Alpert, and P. Villarrubia. Diffusion-based placement migration.

In Proceedings of the ACM/IEEE Design Automation Conference, pages 515–520, 2005.

[53] H. Ren, D. Z. Pan, C. J. Alpert, P. G. Villarrubia, and G.-J. Nam. Diffusion-based

placement migration with application on legalization. IEEE Transactions on Computer-

Aided Design, 26(12):2158 – 2172, December 2007.

www.manaraa.com

143

[54] H. Ren, D. Z. Pan, and D. S. Kung. Sensitivity guided net weighting for placement-driven

synthesis. IEEE Transactions on Computer-Aided Design, 24(5):711–721, May 2005.

[55] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng, K. A. Jenkins,

D. H. Allen, M. J. Rohn, M. P. Quaranta, D. W. Boerstler, C. J. Alpert, C. A. Carter,

R. N. Bailey, J. G. Petrovick, B. L. Krauter, and B. D. McCredie. A clock distribution

network for microprocessors. IEEE Journal of Solid-State Circuits, 36(5):792–799, May

2001.

[56] B. M. Riess and G. G. Ettelt. SPEED: Fast and efficient timing driven placement. In

Proceedings of the IEEE International Symposium on Circuits and Systems, pages 377–

380, 1995.

[57] J. A. Roy, S. N. Adya, D. A. Papa, and I. L. Markov. Min-cut floorplacement. IEEE

Transactions on Computer-Aided Design, 25(7):1313–1326, July 2006.

[58] C. Sechen and A. L. Sangiovanni-Vincentelli. TimberWolf 3.2: A new standard cell place-

ment and global routing package. In Proceedings of the ACM/IEEE Design Automation

Conference, pages 432–439, 1986.

[59] Rupesh Shelar. An efficient clusternig algorithm for low power clock tree synthesis. In

Proceedings of the ACM International Symposium on Physical Design, pages 181–188,

2007.

[60] G. Sigl, K. Doll, and F.M. Johannes. Analytical Placement: A linear or a quadratic

objective function. In Proceedings of the ACM/IEEE Design Automation Conference,

pages 427–431, 1991.

[61] P. Spindler and F. M. Johannes. Fast and robust quadratic placement combined with an

exact linear net model. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 179 – 186, 2006.

[62] W.-J. Sun and C. Sechen. Efficient and effective placement for very large circuits. IEEE

Transactions on Computer-Aided Design, 14(5):349–359, March 1995.

www.manaraa.com

144

[63] T. Taghavi, X. Yang, B.-K. Choi, M. Wang, and M. Sarrafzadeh. Dragon2005: Large-

scale mixed-size placement tool. In Proceedings of the ACM International Symposium on

Physical Design, pages 245–247, 2005.

[64] L. Trevillyan, D. Kung, R. Puri, L. N. Reddy, and M. A. Kazda. An integrated envi-

ronment for technology closure of deep-submicron IC designs. IEEE Design and Test of

Computers, 21(1):14–22, January 2004.

[65] N. Viswanathan and C. C.-N. Chu. FastPlace: Efficient analytical placement using

cell shifting, iterative local refinement and a hybrid net model. IEEE Transactions on

Computer-Aided Design, 24(5):722–733, May 2005.

[66] N. Viswanathan, G.-J. Nam, C. J. Alpert, P. Villarubia, H. Ren, and C. Chu. RQL:

Global placement via relaxed quadratic spreading and linearization. In Proceedings of the

ACM/IEEE Design Automation Conference, pages 453–458, 2007.

[67] N. Viswanathan, M. Pan, and C. Chu. Fastplace 2.0: An efficient analytical placer for

mixed-mode designs. In Proceedings of the Asia and South Pacific Design Automation

Conference, pages 195–200, 2006.

[68] N. Viswanathan, M. Pan, and C. Chu. Fastplace 3.0: A fast multilevel quadratic placement

algorithm with placement congestion control. In Proceedings of the Asia and South Pacific

Design Automation Conference, pages 135–140, 2007.

[69] K. Vorwerk and A. Kennings. An improved multi-level framework for force-directed place-

ment. In Proceedings of the Conference on Design Automation and Test in Europe, pages

902–907, 2005.

[70] K. Vorwerk, A. Kennings, and A. Vannelli. Engineering details of a stable force-directed

placer. In Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 573–580, 2004.

[71] J. Vygen. Algorithms for large-scale flat placement. In Proceedings of the ACM/IEEE

Design Automation Conference, pages 746–751, 1997.

www.manaraa.com

145

[72] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000: Standard-cell placement tool for

large industry circuits. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 260–263, 2000.

[73] Q. B. Wang, J. Lillis, and S. Sanyal. An LP-based methodology for improved timing-driven

placement. In Proceedings of the Asia and South Pacific Design Automation Conference,

pages 18–21, 2005.

[74] Z. Xiu and R. A. Rutenbar. Timing-driven placement by grid-warping. In Proceedings of

the ACM/IEEE Design Automation Conference, pages 585–590, 2005.

[75] J. Z. Yan, N. Viswanathan, and C. Chu. Handling complexities in modern large-scale

mixed-size placement. In Proceedings of the ACM/IEEE Design Automation Conference,

page To Appear, 2009.

[76] B. Yao, H. Chen, C.-K. Cheng, N.-C. Chou, L.-T. Liu, and P. Suaris. Unified quadratic

programming approach for mixed mode placement. In Proceedings of the ACM Interna-

tional Symposium on Physical Design, pages 193–199, 2005.

	2009
	Placement techniques for the physical synthesis of nanometer-scale integrated circuits
	Natarajan Viswanathan
	Recommended Citation

	fom.eps

